190 research outputs found

    Quantum-Classical Liouville Approach to Molecular Dynamics: Surface Hopping Gaussian Phase-Space Packets

    Get PDF
    In mixed quantum-classical molecular dynamics few but important degrees of freedom of a molecular system are modeled quantum-mechanically while the remaining degrees of freedom are treated within the classical approximation. Such models can be systematically derived as a first order approximation to the partial Wigner transform of the quantum Liouville-von Neumann equation. The resulting adiabatic quantum-classical Liouville equation (QCLE) can be decomposed into three individual propagators by means of a Trotter splitting: Phase oscillations of the coherences resulting from the time evolution of the quantum-mechanical subsystem. Exchange of densities and coherences reflecting non-adiabatic effects in quantum-classical dynamics. Classical Liouvillian transport of densities and coherences along adiabatic potential energy surfaces or arithmetic means thereof. A novel stochastic implementation of the QCLE is proposed in the present work. In order to substantially improve the traditional algorithm based on surface hopping trajectories [J. C. Tully, J. Chem. Phys. 93 (2), 1061 (1990)], we model the evolution of densities and coherences by a set of surface hopping Gaussian phase-space packets (GPPs) with variable width and with adjustable real or complex amplitudes, respectively. The dense sampling of phase-space offers two main advantages over other numerical schemes to solve the QCLE. First, it allows to perform a quantum-classical simulation employing a constant number of particles, i. e. the generation of new trajectories at each surface hop is avoided. Second, the effect of non-local operators in the exchange of densities and coherences can be treated without having to invoke the momentum jump approximation. For the example of a single avoided crossing we demonstrate that convergence towards fully quantum-mechanical dynamics is much faster for surface hopping GPPs than for trajectory-based methods. For dual avoided crossings the Gaussian-based dynamics correctly reproduces the quantum-mechanical result even when trajectory-based methods not accounting for the transport of coherences fail qualitatively

    Awareness: An Enabling Feature for mediated Interaction in Communities of Practise

    Get PDF
    The École Polytechnique Fédérale de Lausanne (EPFL) is currently using a Web-based experimentation environment to support laboratory activities in engineering education. The key service for the acceptance of the learning modalities and the appropriation of the environment by the students is a shared electronic notebook called the eJournal. This service is not only used by students to perform the required laboratory work; it is also used to sustain collaboration between students. Additionally it provides support for exchanges with other services integrated in the learning environment. By tracking the creation, the exchanges and the tagging of the digital assets stored in the eJournal database, awareness can be provided. This position paper presents how the eJournal and the associated awareness features are currently enhanced to effectively support interaction in laboratory-oriented communities of practice for members using either desktop or mobile client devices

    Real-Time Interaction over the Internet: Model for QOS Adaptation

    Get PDF
    Real-time Interaction over the Internet (RTI2) is an Internet service that is required typically by remote experimentation applications. From a quality of service (QoS) point of view, RTI2 has constraints that differ from usual real-time multimedia services such as video streaming or video conferencing. The RTI2 QoS can be expressed by three values that represent the level of interaction, the dynamics rendering and the semantic content. The RTI2 metrics, derived from these values, are essential to successfully implement an end-to-end (E2E) control scheme that adapts the transmission parameters to the equivalent E2E infrastructure that encompass not only to the network state, but also to the server and client applications processing capabilities. A model of the end-to-end system is exploited to ensure a minimal transmission time for a given E2E system

    Tackling Acceptability Issues in Communities of Practice by Providing a Lightweight Email-based Interface to eLogbook: a Web 2.0 Collaborative Activity and Asset Management System

    Get PDF
    eLogbook is a Web-based collaborative environment designed for communities of practice. It enables users to manage joint activities, share related assets and get contextual awareness. In addition to the original Web- based access, an email-based eLogbook interface is under development. The purpose of this lightweight interface is twofold. First, it eases eLogbook access when using smart phones or PDA. Second, it eases eLogbook acceptance for community members hesitating to learn an additional Web environment. Thanks to the proposed interface, members of a community can benefit from the ease of use of an email client combined with the power of an activity and asset management system without burden. The Web-based eLogbook access can be kept for supporting further community evolutions, when participation becomes more regular and activities become more complex. This paper presents the motivation, the design and the incentives of the email-based eLogbook interface

    A Systematic Two-Layer Approach to Develop Web-based Experimentation Environments for Control Engineering Education

    Get PDF
    This paper introduces the systematic approach currently used by the Department of Computer Science and Automatic Control of the Spanish University of Distance Learning (UNED) to develop Web-based laboratories for distance learning of topics with high technical contents such as control engineering. This approach differentiates two layers in the construction of web- based laboratories: the experimentation layer and the e-learning layer. For the experimentation layer, LabVIEW and data acquisition boards from National Instruments are used to create the server-side applications and Easy Java Simulations for the client-side interfaces. For the e-learning layer, the eMersion environment is used to support the required flexible educational scheme. This paper describes the programming techniques implemented and the design considerations that justify these particular choices. As an llustrative case-study, an example of development of a web-based application is discussed, in which an electrical drive servo-motor is introduced as a convenient setup to practice with motion control applications. Other significant examples of web-based experiments developed by the authors are also reported

    The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database

    Get PDF
    This is the final version of the article. Available from European Geosciences Union via the DOI in this record.Data availability. The data referenced in this manuscript are provided as Supplement Data Files 1 to 8. In the final version, these files will form DeepMIP database version 0.1 and will be accessible online via a citable DOI reference.The early Eocene (56 to 48 million years ago) is inferred to have been the most recent time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Global mean temperatures were also substantially warmer than those of the present day. As such, the study of early Eocene climate provides insight into how a super-warm Earth system behaves and offers an opportunity to evaluate climate models under conditions of high greenhouse gas forcing. The Deep Time Model Intercomparison Project (DeepMIP) is a systematic model–model and model–data intercomparison of three early Paleogene time slices: latest Paleocene, Paleocene–Eocene thermal maximum (PETM) and early Eocene climatic optimum (EECO). A previous article outlined the model experimental design for climate model simulations. In this article, we outline the methodologies to be used for the compilation and analysis of climate proxy data, primarily proxies for temperature and CO2. This paper establishes the protocols for a concerted and coordinated effort to compile the climate proxy records across a wide geographic range. The resulting climate “atlas” will be used to constrain and evaluate climate models for the three selected time intervals and provide insights into the mechanisms that control these warm climate states. We provide version 0.1 of this database, in anticipation that this will be expanded in subsequent publications.Natural Environment Research Council (NERC)GNS Science Global Change through Time ProgrammeNational Science Foundation (NSF)KU Leuve

    Measurement of the Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2β\beta measurement from B0J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0J/ψKS0)=(1.83±0.28)×105BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions
    corecore