View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Repository: Freie Universitat Berlin (FU), Math Department (fu_mi_publications)
JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 24 22 DECEMBER 2002

Quantume-classical Liouville approach to molecular dynamics:
Surface hopping Gaussian phase-space packets
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In mixed quantum-classical molecular dynamics few but important degrees of freedom of a
molecular system are modeled quantum mechanically while the remaining degrees of freedom are
treated within the classical approximation. Such models can be systematically derived as a
first-order approximation to the partial Wigner transform of the quantum Liouville-von Neumann
equation. The resulting adiabatic quantum-classical Liouville equé®@iE) can be decomposed

into three individual propagators by means of a Trotter splittifig: phase oscillations of the
coherences resulting from the time evolution of the quantum-mechanical subsyatexchange

of densities and coherences reflecting non adiabatic effects in quantum-classical dynam(8}s, and
classical Liouvillian transport of densities and coherences along adiabatic potential energy surfaces
or arithmetic means thereof. A novel stochastic implementation of the QCLE is proposed in the
present work. In order to substantially improve the traditional algorithm based on surface hopping
trajectorieqdJ. C. Tully, J. Chem. Phy€3, 1061(1990], we model the evolution of densities and
coherences by a set of surface hopping Gaussian phase-space paékegswith variable width

and with adjustable real or complex amplitudes, respectively. The dense sampling of phase space
offers two main advantages over other numerical schemes to solve the QCLE. First, it allows us to
perform a quantum-classical simulation employing a constant number of particles; i.e., the
generation of new trajectories at each surface hop is avoided. Second, the effect of nonlocal
operators on the exchange of densities and coherences can be treated beyond the momentum jump
approximation. For the example of a single avoided crossing we demonstrate that convergence
towards fully quantum-mechanical dynamics is much faster for surface hopping GPPs than for
trajectory-based methods. For dual avoided crossings the Gaussian-based dynamics correctly
reproduces the quantum-mechanical result even when trajectory-based methods not accounting for
the transport of coherences fail qualitatively. ZD02 American Institute of Physics.

[DOI: 10.1063/1.1522712

I. INTRODUCTION Mixed quantum-classical schemes offer a complemen-
tary approach. The underlying idea is to attribute quantum
One of the ultimate challenges in the field of modelingeffects to a subsystem of the molecule under consideration,
molecular dynamics is to explore the role of quantum effectswhereas it is sufficient to treat the remaining degrees of free-
While fully quantum-mechanical investigations are presentlydom by means of standard classical molecular dynamics.
and most probably also in the near future, limited to theUsually the separation of the subsystems is motivated by the
study of relatively small moleculésthe vast majority of  disparate mass scales, e.g., the electronic dynamics in studies
studies of larger systems is still restricted to the regime of thef vibronic effects or the proton dynamics in investigations
classical approximatiohHowever, driven by recent experi- of hydrogen transfer systems. The main advantage of such a
mental progress mainly in the field of ultrafast spectroscopymethod is that it treats at least the most important degrees of
there is a strong impact to include at least the most importarfreedom quantum mechanically, even for very large biomo-
quantum effects in studies of larger and, eventually, biologi{ecular system&’ In particular, nonadiabatic effects which
cally relevant molecule$The development of corresponding are known to be of paramount importance in many photo-
theoretical models still poses a great challehiost of the physical, photochemical, and photobiological applications
present approaches consider the dynamics of a small suban be accounted f8f At the same time, the overall numeri-
system(“system”) interacting with the remaining degrees of cal effort does not considerably exceed that of a purely clas-
freedom(“bath” ) using reduced density matrix technigeies sical trajectory simulation.
to describe relaxation and dephasing. In most cases, how- The earliest variants of such hybrid schemes were based
ever, these models rely on strongly simplified models for theon the assumption of separability of the wave functions for
coupling between the dynamics of system and bath and dthe two subsystems interacting with each other through
not provide a fully microscopic model. mean-field potentials and employ a classical approximation
for the heavy-particle subsystelir.}> More recently the
dAuthor to whom correspondence should be addressed. Electronic maifSymptotic properties of such models have been studied with
burkhard@math.fu-berlin.de more mathematical rigdf~° Applications range from the
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study of reaction dynami¢$and vibrational relaxatidf up  tion of surface hopping GPPs is expected to inherit the fa-
to proton-transfer processes in enzyrfeg? vorable scaling properties of trajectory-based implementa-
The empirically based surface hopping scheme repretions of the QCLE, while avoiding the increase of the
sents a first attempt to overcome the limitation ofnumber of particles with simulation time. Hence, it provides
separabilit’* =2 Owing to the intuitive concept of surface a promising tool for the description of medium to large mol-
hopping as well as the favorable scaling properties of thecules.
numerical effort of this trajectory-based implementation, = The remainder of this paper is organized as follows: Sec-
modified versions of the original algorithm are still com- tion Il presents a fully quantum-mechanical model of mo-
monly used in many studies of nonadiabatic moleculadecular dynamics based on a diabatic or adiabatic represen-
dynamicé*~*2where the recently devised continuous surfacetation of the density and Hamiltonian operator. Subsequently,
switching technique can be regarded as a hybrid version ¢f quantum-classical description is derived in Sec. Ill by
mean-field and surface hopping methddis® means of partial Wigner transforms. Section IV presents nu-
During the last few years mixed quantum-classical ap-nerical schemes to solve the QCLE and their implementa-
proaches to molecular dynamics were given a more rigoroution in terms of surface hopping techniques. Numerical simu-
foundation through the advent of the quantum-classical Lioulations in Sec. V illustrate the use of these methods.
ville equation(QCLE).**~4° Based on the elegant formula-
tion of the classical limit of quantum mechanics in phase
space by means of the Wigner transfdtm?®the QCLE can
be obtained as a partial Wigner transform of the originalA. Quantum Liouville equation

quantum Liouville-von Neumann equatiéf:>**Note that re- Let us consider a physical or chemical multicomponent

cently this approach has been extended towards statisticig&,stem composed of a heavy particle of misand a light
mechanics of mixed quantum-classical systems, includin%anide of massn which are described by two sets of posi-

i iccinati ; 52 b
couglr}gtt%a d|SS|E)at|veke_nv(|jronnt1eZ‘|ti th fructi ftion and momentum operatoi®,P and ?,p, respectively.
elated recent work 1 devoted 1o the construction Olgqnarqjization to the case of several heavy and/or light-

Pracl?.;? I aldqlorl',[,hr?s ;[10 stplve t?el QCI;]E ”gg_‘}g%a”Y dusmg particles is straightforward by expressing positions and mo-
muftithreading™ stochastic particie SChemes. €1d€a  menta in terms of vectors of lengthor D, respectively. The

b_elhlnc_j th(ra]se methods is to dprlopr)]agatellnyerac?rl(;ge par- ynamics of the system can be characterized by the follow-
ticles in phase space to model the evolution of densities an 9 quantum-mechanical Hamiltonian operator:

coherences separately. While these approaches open the wa
towards higher dimensionality by providing an in principle T i‘ 2
correct stochastic realization of the QCLE, there is a severe H(T.p,R,P)=V(F.p,R)+ P, 2.0

2M
limitation: Typically, at each nonadiabatic event, a copy of A, here the kinetic energy of the heavy particle is separated

particle has to be created, thus leading to a steeply increasir]zlgom the Hamiltonian of the light-particles which may be
number of threads with time. One way to improve the sam-

pling of phase-space distribution functions is to replace theCOnSIderecj as potential energy acting on the heavy particle,
&like trajectories by finite-width basis functions, exploring
more or less large volumes of phase space at Bt/ first
realization of this technique in the field of nonadiabatic ) . ) _
quantum dynamics is “multiple spawning” using a basis of With the potential energy operatbr depending on the posi-
frozen Gaussian packéfswhich is allowed to dynamically tions of both components. _
expand and contract:?® Applications of the full multiple The dynamics of the system is governed by the
spawning method to biomolecular processes have been r@Yantum-mechanical Liouville-von Neumann equation
ported in Ref. 61. i i

In the present paper we seek for a combination of the ~ @p(t)=— 3 [H,p(D)]-=—+Lp(1), 2.3
respective advantages of the approaches described above to
construct a novel, stochastic algorithm to solve the QCLEWhere the commutatdr, -] of the density operatgs with
On the one hand, the trajectory-based surface hopping aphe HamiltonianH of the system under consideration can
proach keeps the number of particles constant, thus limitingiso be regarded as a Liouvillideupe)operatorﬁ acting on
the numerical effort. On the other hand, Gaussian packets. Note that in the present paper we shall restrict ourselves to
offer a much better sampling of phase space and, furthethe case of a pure quantum state,
more, allow the evaluation of nonlocal operators. Hence, an
efficient simulation technique will consistF())f propagating sets PO=[gO) (], 24
of Gaussian phase space pack@&@®Ps to model the time where the quantum Liouville equation is equivalent to the
evolution of densities and coherences where the amplitudgéme-dependent Schadinger equation. However, a generali-
of the latter ones may be complex to incorporate quantumzation to the case of mixed states, e.g., for a thermal en-
mechanical phase effects. A stochastic criterion will goverrsemble of quantum states, is possitile.
the hopping of GPPs between different states of the quantum As a first step we introduce a position-space representa-
subsystem. Moreover, an adjustment of the amplitudes of thi&on for the heavy-particle degrees of freedom, enabling us to
GPPs can be used to avoid spawninghus, the propaga- write states and densities as

II. FULL QUANTUM DYNAMICS

-

PO S
V( ,p,R)—U(r,R)+%p2, (2.2
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H(R)=(R|y(t)) and p(R,R’,t)=(R|p(t)|R"), where Dirac’s bra-ket notation is used here and throughout

(2.5  the remainder of this paper for the scalar product ionly.
Using thisdiabatic basisset, the light-particle Hamiltonian
r[second and third terms on the right-hand sigelS) of Eq.
(2.10] can be represented by a matrix with entries

where Dirac’s bra-ket notation refers to a scalar product i
the Hilbert space spanned IR/ The corresponding Hamil-
tonian operator of Eq(2.1) becomes

2 Vij(R)=(V(R)| . (2.13

N . 1 i
ry — 2 o2 D!
H(RR)=|{U(F.R)+ 2m P 2M Ar|I(R=R"). Hence, the diabatic matrix representation of the total Hamil-

(2.6 tonian (2.10 can be written as

2

. A ’ " ’ €
The above expressions fp(R,R’) andH(R,R’) have to be V(R)— §AR) S(R-R'). (2.14

understood as a family of quantum-mechanical operators act-
ing in the reduced Hilbert space spanned by the light-particle , i
coordinater and which are parametrically dependent on the't s noted that eacdh of the entries of the _matnt/éﬁ:]) arr]ld

heavy-particle coordinate®,R’. Note that later in the HY(R) corresponds to an operator acting on the heavy-

course of this work a partial Wigner transform in the heavypa_rtiCIe degrees of freedqm. Hence, in the dif’:\batic represen-
degrees of freedom shall be used while the Oluantumt_atlon of quantum dynamics, the heavy-particles are repre-

mechanical nature of light-particles as reflected by the opera€Nted by densitiegor wave functions moving along the
torsf,p shall be retained. diabatic potential energy surfac¥s(R) coupled through the

off-diagonal element¥;;(R).
The adiabatic basiss defined by a unitary transforma-
tion of the diabatic basis such that the representation of the

HYAR,R’)=

Following our earlier work, we now introduce an appro-
priate scaling of time and enerdy,

_ 3 m light-particle Hamiltonian is diagonal with eigenvalues
t=—=t and U=-3U, (2.7 _ R )
ymM f Ei(R) 8= (4 (R)[V(R)| 4{“(R)), (2.19
which leads to the scaled quantum Liouville equation which define our adiabati@orn-Oppenheimémpotential en-
P ergy surfaces. The new basis parametrically depends on the
gp(Hy=—=[H,p(D)]_, (2.9 heavy-particle positionR because the diabatic potential en-
€ ergy matrix(2.13 has to be diagonalized for every value of
where the dimensionless number R. The corresponding matrix representation of the total
Hamiltonian(2.10 is given by
) \ﬁ . 2
““Nwm 29 H3(R,R")= E(R)~ 5 [Ar+2C(R)- Vet T(R)]

serves as a smallness parameter. In particular, the Emit o
—0 leads to the adiabatic limit of quantum dynami¢s? X 8(R-R"), (216

The scaled Hamiltonian occurring in E.8) is given by whereE is a diagonal matrix with entriel;(R) and the last

2 two terms are due to the action of the kinetic operatgron
H(RR)= EZ H(R,R)= ( V(R)— E—AR S(R—R'), the R-dependent adiabatic basis functidqéd'(R)> which is
h 2 the origin of nonadiabatic effects in this representation of

(2.10 quantum dynamics. In particular, the matrix elements of the

with the scaled potential first- and second-order nonadiabaticity operators are given
by
Y me {) 1 k adi adi
V(R):PV(R)=U(R)+Wp . (2.17 Cij(R)=(¢; (R)|VRk|¢j (R)), (2.17
After having given a representation of the Hamiltonian and  Tij(R)=(#“(R)|Ag|62U(R)), (218

?e”nsn_y o?eratorts) n :he hgavly-p%r]ngl_e bc?prdlnjcézt_hekz) i where the dot product in third term on the RHS of E316
ollowing two subsections deal with diabatic and adiabatic, .o - o understood 33”(R)'VR=EE=1C:(,-(R)VRK- The

representations of the operatdrd in the light-particle de- . . . . .
grees of freedom. Furthermore, note that we will SuppresQrst-order coupling operator is anti-Hermitian with respect to

the tildes on the scaled quantities throughout the remaindépterChange of the indiceis,
of this article for notational simplicity. er = _(C}(i)*’ (2.19
B. Hamiltonian operator while there exists no such relation for the maffixTo sum-

In the following we will assume an orthonormal, com- marize the adiabatic picture of quantum dynamics, the
plete basis seff #%®} to represent light-particle wave func- heavy-particles are represented by densit@swave pack-
tions and operators in, ets moving along the adiabatic potential-energy surfaces

diar + dia E;(R) while the nonadiabaticity operatoS(R),T(R) in-

(610 = 46y, (212 duce nonadiabatic couplings.
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C. Density operator is noted that we have?®=XZ" for vanishing nonadiabatic-

In analogy to what was shown in the previous section Wé’ty, e.g., for the regions far off avoided crossings or intersec-
will derive representations of the density operator using eiflons.
ther one of the two basis sets for the state vectors of the light
particle. We begin by expanding the total wave function of
the system using thdiabatic representatiori2.12), IIl. PARTIAL WIGNER TRANSFORMS

i i A. Definition
XPRD=(SU(RY), (220
. - i o The Wigner transform is a well-established tool to rep-
where the expansion coefﬂmer;(/g'a(R,t)_ are readily iden-  oq0 quantum dynamics in phase sgacé’in particular, it
t|f|e<_j as tlme—dependent_ wave f_unct|0ns_ (.)f the heaVY'can be shown that the equations of motion for Wigner distri-
partllclles. .The corresponding density matrix in the diabatiq, oy functions have a well-defined classical limit for
basis is given by —0. In order to derive a quantum-classical formulation for
pIAR,R")(1)=(pMp(R,R",1)| oI =XIYR R’ 1), the dynamics of a system comprising of light and heavy-
: . . (2.21) particles, we shall employ a partial Wigner transform with
, _ _ dia L respect to the coordinates of the latter and consider the limit
in which every matrix elemenk;;~ stands for g(dlab_atl,(? e—0. As will become more transparent in the following,
position-space density matrix of the heavy-particleRjR":  g\,ch a representation of dynamics allows for a description of
Xﬂia( R,R,t)= x4 R,t)()(?ia( R/ ,t))*. (2.22 t.he. degrges qf fr.eedom of .the heavy-particles in the classical
limit while still incorporating quantum effects connected
Alternatively, the total wave function can be writtenddia-  with the light-particle dynamic&*° Thus the partial Wigner

batic representation transform provides a suitable tool for a quantum-classical
adi L adi description of dynamics. Using the scaling introduced in Eqg.
XxP(RO=((R[#(R1)). (.23 (2.7), the partial Wigner transforrAy(R, P,t) of the (diaba-
Accordingly, the density matrix can be expanded in the adiatic or adiabati¢ matrix representationA(R,R',t) of a
batic basis set obtained for some valueRof guantum-mechanical operaté(f,p,R,P,t) can be written
as

PR R 1) =(4P(R)|p(R",R",1)|$7(R))

€ € [
i A R,P,t)=f A(R——E,R+—E,t e'P=dE,
=S Bn(RROXER R M LA RTZERY 3
mn (3.
X ®,;(R",R), (2.24  where an additional factor @@ P has to be used to obtain

adi - i . dia - the correct normalization for the Wigner distribution function
whereX*"is defined in analogy t&"in Eq. (2.22 but for w as a partial Wigner transform of the density matpix
the adiabatic heavy-particle densities. The scalar products @fnte again that\,(R, P,t) stands for a matrix of functions
adiabatic basis functions for different positidRscan be x- iy classical phase space with each of the matrix elements
panded in a Taylor series using E¢8.17) and(2.19, corresponding to a pair @liabatic or adiabatjcstates of the
D R,R’ — adi R adi R')VY=6 +(R —-R)-C..(R SyStem.
(RRD=CATRIATARD) = 8+ ( )Cy(R) In the next two sections, the effect of the partial Wigner
+O((R'—R)?), (2.29  transforms on the Hamiltonian and on the density operator is

where the dot product has to be understood in a similar Waexplamed separately before finally the quantum-classical

as in Eq.(2.16. Finally, the expression for the adiabatic %quatlons of motion are derived.
representation of the density is obtained as

pié}di(R)(Rf R't)= xﬂdi(Rf R+ (R —R) B. Hamiltonian operator
(C(R)X™(R",R",1));; — (R"—R) In this section we want to apply the technique of partial
, v Wigner transforms to the total Hamiltonigd.10 of a sys-
‘ R, ij , tem of light and heavy-patrticles. The transform of the diaba-
(X*(R’",R",t)C(R));j + O(5R?) f light and h icles. Th form of the diab

(2.26 tic representation given in E@2.14) is straightforward

where the notatiorsR indicates the order of magnitude of HAA(R,P)=V(R)+ $P2. (3.2
R’'—R or R"—R. In contrast to the diabatic representation

. . . . . "When Wigner transforming the adiabatic representation
the elements of the adiabatic density mapf{' do not sim- g g P

) i i (2.16 of the total Hamiltonian of the system, we make use of
ply equal the corresponding heavy-particle dens(d' but the relation for the Wigner transform of a product of
contain additional terms originating from ttke dependence operatord1—45

of the adiabatic basis functions. In order to be consistent with
the error estimates in the forthcoming sections we have given
here only the expression up to first orderdR. However, it

is straightforward to calculate higher terms. Furthermore, it (3.3

. €
(AB)yw=Aye'?) *B,,= AyBw+ ST AWABy+ O €?),
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whereA stands for the Poisson bracket operéfor: D. Quantum-classical Liouville equation

AWABw={Aw,Bw}=VeAw: VaBw— VrAW: VpBw . In order to obtain a quantum-classical equation of mo-
(3.9 tion for the system under consideration, we have to calculate
Applying this rule to the first-order nonadiabatic coupling in & partial Wigner transform of the quantum Liouville equation

the third term on the RHS of Eq2.16 we hav&® (2.8). Replacing all expressions by the respective transforms
and using again the first-order expression for the Wigner

transform(3.3) of products of operators one readily obtains
the QCLE

2
(eC(R)- eVr)yy= eC(R)-iP—%VR-C(R), 3.5

where all terms of higher order invanish. Hence, the partial i
Wigner transform of the total Hamiltonian in adiabatic rep-  dww=—Z[(Hp)w=(pH)w]
resentation can be expressed by

i 1
' 1 € S — _
H&?I(R,P)=E(R)+§P2—I60(R)P+§VRC(R) e_[HW1pW]7 2({HW1pW} {pWaHW})
2 +0O(e). (3.9
- ET(R)' (36 As will become more evident in the following section, the

) ) ) ) first term on the right-hand side of the above equation de-
Whlch again has to be understood as a matrix of functions iQ.iipes the purely quantum dynamics of the light-particles
classical phase space. while the second and third terms contain both the dynamics
of the heavy-particles and genuinely quantum-classical
terms.

In order to apply this equation to a particular system we
In this section the partial Wigner transforms of the den-have to choose a certain representation for the transformed
sity operator shall be derived. First, the diabatic density maeensityp,, and the transformed Hamiltoniat,, . Using the
trix shall be considered. Inserting E.21) into Eq.(3.1)  diabatic representation introduced above, we have to insert
with R"=R—€E/2 andR"=R+ €E/2, it is straightforward Eqgs.(3.2) and(3.7) into Eq.(3.9). Evaluating the commuta-
to obtain the transform of the density. It can be written as aor and the Poisson brackets we obtain diebatic QCLE
matrix of Wigner distribution functions iR and P with

C. Density operator

) A i :
entries IXIAR,P,1)=— ;[V(R),x‘v"va(R,P,t)],
da (R Pt)—L X9 R— == ,R+ = = t|eP =dE di

Pwii (R ED= 50D Je i | R 2= R T 55 = ~P-VeX{AR,P,1)

= xdia. 1 A

Xwij (R.P.1), S + SIVRV(R), VeXHAR,P1) L. + O ).

where each of the matrix elements simply equals the Wigner
transform of the density of the heavy-particles only. Using (3.10

the adiabatic representatiq2.26 this expression for the

partial Wigner transform has to be replaced by Similarly, by inserting Eqs(3.6) and(3.8) into Eqg. (3.9) the

adiabatic QCLEis derived:

. 1 ) € €
adi adi —_ — i

- - —_— a - =5, -|——»—r, . | . .
pwi(R.P.1) (2)P fRDX'I (R 2~ R 2 t) 6tX33'(R,P,t)=—E[E(R)—|eP-C(R),xs;"(R,P,t)],

XeiP-EdE_;f - [(Cxady,. 1 i
2(2mP Jro ! + S[E(RLICR).VXF(R PO

HX0);)e FdE+O() —P-VeX{(R,P,1)

. i€
=X (RP,O+ = 1 _
wi (PO T3 + 5[ VRE(R), VeXG/(R,P.)]. + O(e).

X ([C(R), VeXG(R,P,1)]1)i; + O(€?),

(3.1)
(3.8
where[C, VoX{{']. = =¢_;[C* Ve X', stands for a gener- E. Discussion
alized form of the anti-commutatgA,B], =AB+BA and It is worthwhile to compare the present derivation of the

whereX\"’,‘\‘,’i is defined in analogy to<$,'\‘,a in Eq. (3.7) but for  quantum-classical Liouville equation with other approaches

the adiabatic heavy-particle densities. As stated previouslyn the literature. Based on previous work on semiclassical
the first-order correction term is due to the fact that the adiapropagators by Krauset al,’® Mukamel®’ Martens and
batic basis for the light-particle Hamiltonian parametrically co-workers:¢3°®4and Hartmanret al®° have used quantum-
depends on the coordinatBsof the heavy-particles. classical equations of motion which are very similar to the
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ones obtained here. However, they used a truncated Wigner- it .

Moyal series expansion for the transform of producse X(R,P,t)zex% - EE>X(R,P,0)- (4.2
Eqg. (3.3] in 7 and not ine=+m/M. Hence, their expres-

sions reflect the traditional derivation of classical dynamicdn close analogy to the use of Trotter or Strang splitting
in the —0 limit.%® The expansion in the smallness param-schemes for the solution of the time-dependent Stihger
eter e was introduced in more recent work to rigorously es-equatior’~**a numerical solution of the adiabatic QCLE is
tablish a quantum-classical limit of the quantum Liouville realized by a Trotter splitting of the time evolution superop-

equatiorf:’° erator into three parts
Furthermore, we would like to emphasize that in the
present study the original quantum Liouville equati@a3) L=01+ Lot Ls 4.3

describing the full quantum dynamics is first expressed in a
(diabatic or adiabatic representation and thefpartially)
Wigner transformed. This is in contrast to other recent stud-
ies where the density and Hamiltonian operator are first
Wigner transformed and then expressed ird@abatic or iT. iT.
adiabati¢ representatio®47-4953-5564though being for- X(R,P.t+7)= exp{ - ?51) ex;{ —2 kL
mally equivalent, those studies give the evolution directly in
terms of the heavy particle densitie@\‘,". Our approach,
however, also allows for the construction of an equation of
motion for the full adiabatic densitydy' by direct insertion

of Eq. (3.6) into Eq (3 9 without using Eq.(3.8). The re-  where the individual superoperators are given by
sulting QCLE forp is identical to Eq.(3.11) but does not
contain the second commutator which is difficult to treat
numerically because of the nonlocal operdipr(see below.
Nevertheless, it has been shown that the simplified propaga-
tion yields aO(e) approximation to the gquantum-classical
expectation values of physical quantiti®s:

which allows for a discretization of the soluti@4.2) using
small time steps= O(e),

xexp( - ¥Z3)X(R,P,t)+(’)(ez), (4.4)

—i;ZlX(R,P,t)=—iZ[E(R),X(R,P,t)],, (4.5
— %ZZX(R,P,t)z[— P-C(R),X(R,P,t)]_

1
(Ayw= f f tr(X9AL dRd P, (3.12 T2 [E(R),LC(R), VeX(RP.D]. ],
(4.6)

Furthermore, note thax3' and p3%' coincide in spatial re-

gions with vanishing klnetlc couplinG(R). This is of prac- — I—Z3X(R,P,t): —P-VrX(R,P,t)
tical importance for simulations where both the initial and €
final states are far from the coupling reglons In these cases it 1
is sufficient to propagatp?y instead ofX3"' if intermediate +5[VRE(R), Ve X(R,P,O], . (4.7)
steps are not to be considered.
In the following we want to discuss the propagators associ-
IV. NUMERICAL REALIZATION ated withZ;, £,, andZ5 individually. For the sake of sim-
A. Superoperator splitting plicity consider a representation of the light-particle Hamil-
tonian that consists of two states only. Assuming the diabatic

In the following we want to construct a numerical propa- ngtential matrixV to be real and symmetric, we obtain the
gator for the solution of the adiabatic QCLRB.11) neglect- following eigenvalues:

ing all first- and higher-order terms in the smallness param-
etere. Using a simplified notatioX= Xad' the evolution of

the adiabatic density can be expressed as E1AR)= 3[Via(R) +V2o(R)]

£3V[V1(R) — Voo (R) ?+4ViAR). (4.8

i,
IX(R,P,t)=— - LX(R,P,1), (4.2 ) ) o ] o
€ The corresponding first-order kinetic coupling matrix is
found to be real and antisymmetric with off-diagonal ele-
with the formal solution ments:

[V11(R) = V2A(R) JVRV15(R) = V1A R) VR V14(R) — sz(R)]

[Vax(R)— Vol R 12+ 4V24R) “.9

CiAR)=—Cn(R)=
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In the following we will replace thdéreal) densities and the where the first two terms on the RHS can be understood as
(complex coherences by a set of four real-valued phaseRabi-like oscillations of the populations and the third term
space functions. We introduce the sum and difference of thetands for transitions induced by the coherence of the two

densities, states. At the same time, E@.16) describes a change of the
L (real part of th¢ coherence (t) which can be understood as
o ()= 2[X0(t) + X D)], (4.10 a dephasing and rephasing of the corresponding wave func-

. tions in states 1 and 2.
o(t)= 3 [ Xya(t) = Xao(t) ], (4.1) If also the second term of E@4.6) is taken into consid-
along with the real and imaginary parts of the coherence: eration, we encounter the nonlocal nature of the quantum-
classical propagation through the momentum derivatives.
r(t)=Re Xy(t)]= 5[ Xyo(t) +X(D)], (412 The time evolution of (t) in Eq. (4.16) has to be replaced by

1
j(t)zlm[xlz(t)]:z[le(t)_XZI(t)]- (4.13 ar(R,P,1)=276(R,P,t)

Phase oscillationg£;). The time evolution connected with +[E1(R)~E5(R)]C1AR) - Vo (R,P,1)

the first superoperatd#.5) affects only the coherencésff- S(R)
diagonal elements of) while leaving the densitiegliagonall =1+ > Vp) X11(R,P,t)
elements unchanged. Hence, the time evolution can be re-

written as ( S(R) )
— ¢ 1- =L Vo |Xo(R,P,t). (420
r(t))_( 0 w) r(t) 2
Wiw/T\ e o

! j(t)
_ - : o Assuming that the vectds= (E;—E,)C;,/{ is sufficiently
the solution of which is a rotation in the plane of the com-small, as is the case in the vicinity of an avoided crossing,
plex numbers, this can be approximated by

r(t+7)) [ codwr) Sin(wT))(r(t))
jt+7)) | —sinwr) cogwr))\i(t))’
with Bohr frequencyw=(E;—E,)/e. Obviously, this evolu-

tion can be traced back to the quantum-mechanical commu-

tator in Eq.(3.9) and is a purely qguantum dynamical effect.
While these phase oscillations can be neglected in the limit

, (4.19

4.1
419 &tr(R,P,t)%eXp( + S(TR)-VP>X11(R,P,t)

—geX[{ - S(TR) 'Vp)Xzz(R,P,t)

of very large energy gaps, they start to play an important role :qu( R P+ S(R) t) _ {X22< RP— S(R) t).
in the region of avoided crossings where the phase oscillates ' 2’ ’ 2
only slowly. (4.21)

Exchange(L,). As a first step, let us consider the time
evolution connected with the first term on the RHS of Eq.jence, in the framework of the momentum jump approxima-
(4.6) only. Note that neglecting the second term correspond§on the transfer of population of the quantum system is as-
to propagation ofp instead ofX [see Eq.(3.8)]. Then the  gociated with a change of the momentum of the classical

time evolution reduces to system to compensate for the difference of the potential en-
S8(t) 0 —2¢\[at) ergies of the adiabatic statés.
A r(t)) = Y )(r(t) , (4.19 Transport(L3). Finally, the propagator associated with

the third part of the time evolution operator is investigated.
where we use the shorthand notatigr P-C.,. The solu- BecauseE is diagonal, the commutator in E¢4.7) can be
tion of these coupled equations is given by cast into purely classical Liouville equations describing a

. Hamiltonian flows for each entry of the density matrix,
S(t+ T)) (cos(2§r) —sm(2§r)> S(t) y y

rit+7)) \sin2¢r) cog2{7) r(t))’ 419
describing a rotation in the&(r) plane with an angular fre-
guency of Z. Note that the imaginary paj{t) of the coher-

ence is not affected. Hence, by changi#(@), this propaga- here the effective potentials are given By = (E;+E;)/

&tXij(R,P,t)=—|; Eij(R)-i-;Pz,Xij(R,P,t) , (4.22

states, adiabatic potential-energy surfaces while coherences are sub-
X1q(t+ 7) = coL(£7) X 14(t) +SINP(£7) Xoolt) ject to an arithmetic mean potential.
_ SummaryA diagram of the Trotter splitting4.4) of the
—2sin({r)cog{)r(t), (4.18  adiabatic QCLE(3.11) is shown in Fig. 1. First, the phase
Xyl t+ 7) = SIR( £ 7) X15(t) + COL(£7) X ol 1) oscillations of the coherence are illustratedMymixing the

real and imaginary parts(t) andj(t) without changing the
+2sin({r)cog{m)r(t), (4.19 difference of populationsg(t). Next the exchange operator
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8(¢) r(t) J) Assuming that the system is initially prepared in a single
adiabatic stateé, the ensemble of pointyR;;,P;;)} is ob-
tained by Monte Carlo sampling from the initial Wigner dis-
tribution functionX;; (R,P,t=t;). If more than one adiabatic

e state is initially populated, the trajectories are distributed ac-

cording to the respective densities. To allow for a coherent
propagation, one has to associate a density matrix with each
of the trajectories. The initial value of the density matrix is 1
in the corresponding diagonal element and zero elsewhere.
Then time-dependent ensembles representing the multistate
density at subsequent times are calculated by iterating the
following three propagation steps for each member of the

p11 P22
ensemble.
@@ Phase oscillations (£;). The purely quantum-

mechanical time evolution associated wih is straightfor-
ward to realize by updating the phase of the coherence ac-
cording to Eq.(4.15.
S(t+T1) r(t+7) Jit+7) Exchange(£,). The quantum-classical time evolution
associated withC, consists of two parts sd&q. (4.6)]. The
FIG. 1. Interplay of the three propagators: effectgf(phase oscillations  first one characterizing the exchange of densities and coher-
L, (e.xchang}.: and L5 (transport onlthe real-valued representation of the ences is easily realized by updating the density matrix fol-
density matrix expressed a(t) =3[ X;(t) ~XzA0)], r(t)=ReX;A1)], lowing Eg. (4.17. Upon linearization of the trigonometric
andj (t) =Im[X;,(t)]. While £, and L5 can be described as rotations of the 3 s AT .
two quantities involved, the transpaft; acts differently on densities and functions[becauser=O(¢)] in Egs. (4.18 and (4.19, the
coherences. change per time step of the diagonal elements féads

P1_a(t)=Xay(t+7) = Xpa(t) = = 271 (1), (4.24
L, mixes populations(t) and coherence(t). Finally, there _ _ _
is transport under the influence df; where each of the Po1(t)=Xpo(t+7) = Xpo(t) =271 (1), (4.25

densities and coherence is transported along its own effectiighich determines the probability for a sudden hop of a tra-

potential-energy surface. jectory from one quantum state to the other one. In practice,

~ A similar splitting scheme may also be applied to they hon from state to statej is realized whenever the prob-
diabatic QCLE(3.10. While eliminating the superoperator ability P, _; exceeds a random numbex® < 1. The second

I : . j
L, due to the absence of kinetic couplit(R), there is yart of the propagatof4.6) associated withC, can only be

exchange th_rough the off-diagonal elements of_the F_’Otemieﬂeated in the framework of the “momentum jump” approxi-
energy matrixV(R) in £;. In contrast to the adiabatic de- 5tion of Eq.(4.2) while a direct solution of Eq(4.20
scription, this transfer of densities and coherence occurs on &nnot be implemented within the framework of the tradi-

fast time scale)(1/e) which makes the diabatic QCLE nU- {jona| SHT approach. The momentum of the trajectories hop-

merically mu.ch less favorable. In _addition, the dynamlcspmg between states is changed such as to ensure conserva-
connected withL; becomes more difficult through the ad- tion of the sum of the potential and kinetic energies,

vent of nonlocal operators connected with the potential cou-
pling V;;(R). 3P%+E;(R)= 3P +E(RY), (4.2

which implies the possibility of rejecting energetically for-
bidden transitions, where the kinetic energy is not sufficient
The simplest approach to a numerical solution of theto compensate a hop to an energetically higher state. Note
adiabatic QCLE3.11) leads to the well-known surface hop- that this is a reason often cited for the internal inconsistency
ping trajectory(SHT) scheme which was originally derived of the trajectory-based methdd?®
empirically??=?*It is based on classical trajectories stochas- ~ Transport(£3). The purely classical time evolution as-
tically hopping between the adiabatic states of the quantursociated withZ; is realized by transporting all members of
system. In order to demonstrate how this algorithm can béhe ensemble along their respective potential-energy surfaces
derived on the basis of the Trotter splitting of the adiabaticE;(R) according to Eq(4.22). This can be achieved by any
QCLE (4.4), we shortly summarize the concept of surfaceof the algorithms commonly used in classical molecular dy-
hopping in the following: namics simulationé’ e.g., the symplectic Verlet algorithm.
RepresentationsThe densities are modeled using a set  Discussion The obvious shortcoming of the SHTs algo-
of (equally weightegl 5-like point particles in classical phase rithm is that it does not correctly account for the transport of
space: coherences. Instead it is assumed that a complete density
N matrix is propagated with each of the trajectories in the en-
Xn(R,P,t)*—E S(R— Riki(t))ﬁ(P—Piki(t)). (4.23 semble,_ thus enfor_c_ing the co_he_rences to be transported
Nii k=1 along with the densities. In realistic quantum molecular dy-

B. Surface hopping trajectories
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namics, however, one generally observes the coherences to The initial set of GPPs is obtained from the initial
be transported into different regions of phase space as indwigner distribution functionX;;(R,P,t=t,) by means of a
cated by the different effective potentials in E4.22). This  novel algorithm for the optimal decomposition into GPPs at
usually leads to a decay of coherence at the position of tha given accuracy. For details the reader is referred to Ref. 72.
densities. Hence, the traditional SHT algorithm typically Using the ansatz of Eq$4.27) and (4.28, a propagator of
overestimates the coherence at the position where, e.g., tllee adiabatic QCLE using the Trotter splitting technique
RHS of Egs.(4.24) and(4.25 has to be evaluated. Note that (4.4) is constructed as follows:
there exist suggestions to remedy the problem of “overco- Phase oscillation£;). The purely quantal evolution
herence” in the literaturd! (4.14 simply results in phase oscillations of the coherences
which can be achieved by updating tttemplex amplitudes

of the GPPs by multiplication with the highly oscillatory
C. Surface hopping Gaussian phase-space packets phase factors,

In order to overcome the above-mentioned disadvantage
of the traditional trajectory-based surface hopping algorithm
one can follow two different approaches: One obvious posyith the Bohr frequencyy;; = (E;— E;)/e.
sibility is to model the evolution of the coherences by sets of  Exchange£,). The quantum-classical exchange of den-
trajectories with complex-valued weights. For ahstate  sjties and coherences is realized in the following way: In
problem one has to propaga#§N+1)/2 phase-space func- analogy to the trajectory-based surface hoppiB#iT) ex-
tions instead oN functions in the traditional SHT approach plained in the previous section, we allow for a hopping of the
described abov&. While this does not present a major ob- Gpps representing the densities according to the same crite-
stacle for simulations where the dynamics is determined by &on (4.24) and (4.25 evaluated at the center of each of the
few states only, a more serious problem arises. In order tgspps. Note that there is no adjustment of the momentum of
evaluate equations such as E¢$.16—(4.21), we need in-  the hopping GPP because the second commutator in Eq.
formation about the coherence to propagate the density at@ 11) can be treated beyond the momentum jump approxi-
certain point in phase space and vice versa. This type ghation (see below
information isa priori not available in the SHT approach Following the hopping process, the densities and coher-
where phase-space functions are sampled-blye particles  ences have to be updated such as to fulfill the rotation given
in phase space. A way to circumvent this problem is the usg, Eq. (4.17) as close as possible. The simplest way to
of spawning or multithreading algorithms which generategchieve this is by readjusting the amplitudes only, while
new particles where needed. Despite the successful applicgsaying the other parameters of the GPPs unchanged. Con-
tion of such algorithms for a number of prototypical prob- giger, e.g., the change of densi, in the first adiabatic
lems in photophysics and photochemisttythe principle  state. Evaluation of the LHS of Ed4.18 at given points
limitation of this method lies in the rapidly growing number (R! p!y in phase space leads to the following expression for

Aikj(H— T)=Aikj(t)exp(—iwijr), (4.29

of particles with increasing time. the density after propagation for a time step
Representationdn the present work we rather suggest
an alternative approach to propagate both densities and co- N1

. . . k k
herences: In order to achieve a dense sampling of the classi- Xu(R',P',t+7)= k21 Afy(t+7)giy(RLPLE+7),
cal phase-space functions, one can represent them as a sum B

of traveling GPPs replacing the classical point particles in I=1,...N;. (4.30
Eq. (4.23,
N This allows us to rewrite Eq4.18) as a set of coupled linear
ij .
equations,
Xj(RP.O=2, Af(DG(RP.D), (@27
G-a=y, (4.3

where the amplitudes;\i‘j-(t) of the Gaussians are real or

complex for the densitiesi€j) or for the coherencesi ( wherea is the vector formed by the unknown “new” ampli-

#]), respectively. Each of the Gaussian phase-space packdtidesa, =A% (t+7), andy is the vector formed by the RHS

in the above equation is parametrized in the following way:of Eq. (4.18 evaluated at the pointsR{,P') using represen-
tation (4.27 in terms of known “old” GPPs:

g5 (R,P,t)=exp — ajf () [R— Ry (1) ]*~ B (D[P— P (1) ]°

Ni1

— Y5 (D[R=RY (D[P P (1]}, (4.28 yi=cos({n) 2, Af(DgH(RPY)
where Rikj (t),Prj(t) give the position of the center of the K=t
packet in phase space, and (t),B5(t), ¥f(t) specify the N2
length and rotation of the axes of the elliptical contour of the +sinf({7) 2, A5 (D)g5(R',P't)
packet. Note that the dense sampling by GPPs allows to K=t
evaluate phase-space functions at any given pd®iP] Nip
which is impossible for trajectory-based methods. For a -2 Sir(ZT)COS(Q“T)kgl R AN (1) 1g5AR, Pl 1).

mathematical proof of convergence of particle methods for
Liouville-type equations see Ref. 71. (4.32
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Finally, the symbolG in Eq. (4.3]) stands for the square equation of motior’® These equations are solved routinely in
matrix with elements classical molecular dynamics simulations using, e.g., the
Kool _ K N ) leapfrog algorithn® The width and shape of the GPPs are
Gie=0u:(R P, th m) =exp — aqy(t+ 7[R =Ry (t+7)] determined by the curvature of the potential-energy function.
- B (t+ [P = PX(t+ ]2 A modified leapfrog algorithm for an efficient solution of the
" Dk A above set of equations for GPP evolution which conserves
—yut+ D[R =Ry(t+)J[P' =Py(t+ )]}, (433 poth norm and energy has recently been develdpeébte
where the quantitiesRY;,P%,,a%, 85,75, have already thatitis useful to monitor the GPP widths during propaga-
been propagated for a time stepA natural choice for the tion in order to check the validity of the locally quadratic
points R,P') are the “new’ centers|R% (t+7),PX(t representation of the potential-energy surfe€@4. Should
+7)] of the GPPs themselves, thus rendering the matrix elthe widths increase beyond a certain threshold given by a
ements to be identical to the overlap of the GPPs. Note thdypical length scale of the potential-energy function, the
in realistic simulations the numerical solution of 4.31) is ~ Simulation is suspended and the phase-space functions are
greatly facilitated by the fact that the matiiis very sparse refit by a new set of GPPs. A discussion of advanced algo-
because the overlap practically vanishes for GPPs that are fithms for classical GPP dynamics which are adaptive both
from each other in phase space. Note that there is a variety afith respect to spatial and temporal discretization can be
special algorithms designed for the efficient use of sparséound in Ref. 74.
systems? The amplitudes of the GPPs representing the den-  In multidimensional simulations the Laplacian in Egs.
sity of the second state,,, are obtained by evaluating Eq. (4.34 and (4.35 will have to be replaced by the Hessian
(4.19 in the same way. Analogously, the upd&4e20 of the  matrix. While this information is available, e.g., from elec-
complex amplitudes of the GPPs representing the coherent¢mn structure calculations for small to medium molecules,
can be treated beyond the momentum jump approximatiothe calculation of the Hessian may represent a computational
(4.21) by analytically evaluating the action of the nonlocal bottleneck for large molecules. In that case the “thawed”
operators ¥p) on the GPPs. GPPs as defined in E¢4.29 will have to be replaced by
In summary, the solution of the above system of equa“frozen” packets?® i.e., the shape matrices,,y are as-
tions (4.31) yields the “new” amplitudesa in terms of the  sumed to be constant where the reduced flexibility will have
“old” amplitudeS contained |ny It remains to be seen to be Compensa‘ted by using a |arger number of GPPs.
whether it may be useful to update the widths and centers of  piscussion The principle of a SHG-based approach to
the GPPs, too. However, this would lead to a system of nonthe solution of the adiabatic QCLE by means of an ensemble
Iln.ear.equatlons. Instead, it may be advisable to circumvengs syrface hopping GPPs should be clear from the previous
this difficulty and to compensate the reduced flexibility of {hree paragraphs. However, the initial conditions deserve
the individual GPPs by employing a larger number of themg,me attention. First of all, let us discuss the representation
Transport (£). The classical transport4.29 of the ¢ yhe densities. On the one hand, the GPPs have to be wide
densities and coherences along their respective effecnvgnough to guarantee a dense sampling of phase space. On the

potential—energy surface; is.realized in.the framework of th‘7aother hand, they have to be sufficiently narrow in position
locally quadratic approximation. Assuming that the GPPs ar%pace in order to be subject to a locally quadratic potential

sufficiently narrow in position space, the potential-energy : L -
T ) ) ZYenergy functior{see the approximation in E¢4.34)]. Simi-
function is approximately locally quadratic over the spatial 9y ! PP .34]

width of a packet larly, the GPP widths have to be small compared with the
P ' spatial extension of the kinetic coupli®(T). An algorithm

Eij (R)~Ej; (RY; (1) + VRE;; (RE (1)) [R—R¥ (1)] for optimal decomposition of an initial density with a pre-
. . S specified global error is described in Ref. 72.
+ 2 AREj; (Rij(1)[R—Rjj (1]~ (4.34 Another issue is the initial representation of the coher-

Inserting this ansatz together with the GPP representatioﬂnces' E.ve.n.v.vhen the initial .coher_ences va_mishgs, Le., if the
(4.27) and (4.28 into the classical Liouville equatiof#.22 system is initially prepared ina s!ngle adiabatic state, we
leads to first-order equations of motion for the parameters of€€d @ set of GPPs with zero amplitudes to model the coher-

the GPPgRef. 56 ences. In the course of the propagation, their real part will
i} } acquire an amplitude due to the operation &f [see Eg.
Ry (1) =Pjj(1), (4.16)], which shall be rotated in the complex number plane

by virtue of £, and transported by the action 6§ (see also

Kity=— (RK
9Py (1) = = VE; (R (1)), Fig. 1). The use of grid methods as suggested in Ref. 39

dafi (1) = ¥ (DARE;; (R (1)), clearly becomes prohibitive for multidimensional systems.
. ’ Instead, we proceed as follows to generate the initial posi-
Wi (1) =—v;j (1), tions of the GPPs modeling the coherences: First, a

K K K K trajectory-based surface hopping simulation is carried out. At
Iy (0= = 2055 (1) + 265 (D ARE;; (Ry; (1)), (4.35 each instance of time we are collecting those trajectories
In analogy to earlier approaches to solve the time-dependemthere coherence information is essential, i.e., where the hop-
Schralinger equation for the motion of Gaussian wave pack{ping probability is large, and collect the respective triples
ets, the center of the packet follows Hamilton’s classical(Ry,Py,ty). Should this set become exceedingly large, we
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FIG. 2. Single-crossing example: adiabatic potential energy cUB#ER) FIG. 3. Single-crossing example: population of upper adiabatic state versus

and E,(R), governing the transport of densitiesolid line), mean-  ne. hymerically exact, fully quantum-mechanical simulatit@M” ), sur-

anthmetlca_l sur_faceElz(_R), for the transport of coherendeotted ling, face hopping trajectorie§'SHT” ), and surface hopping Gaussian phase-

and nonadiabatic couplinG;(R)/4 (dashed ling space packetéSHG” ). Note that for both the SHT- and SHG-based simu-
lations 100 particles have been used.

introduce a Monte Carlo sampling from this set in order to
obtain a smaller one. In a second step, each of these points in
phase space is propagated back frgpto initial time t. First of all, the numerically exact quantum evolution is
This supplies us with initial values for the centersgenerated as a reference for the quantum-classical propaga-
Rij(to),Pij(to). The corresponding width parameters aretion schemes. It is obtained in the Sctiirger picture using
chosen such that a dense sampling of the coherences in phas@rid representation in position space allowing for the effi-
space is guaranteed. Once we have completed the initial cogient use of fast Fourier transforiBFT9 for the evaluation
ditions, a forward simulation is performed, treating densitiesof the kinetic energy operatd?. The time discretization is
and coherences on the same footing, i.e., as a set of GPPs,ascomplished by a second-order Strang splitting of the ki-
described in the three previous paragraphs. Again it is notetietic and potential parts of the Hamiltoni&n®® The result-
that the propagation of the densities and coherences might g population dynamics can be seen in Fig. 3. Upon passing
performed adaptively through the techniques suggested ithe region of the avoided crossing, the population of the
Ref. 74, i.e., GPPs can be generated or deleted as neededipper statew,(t)= [dR|x»(R,t)|?, decreases to 64%. Note
the weak Stueckelberg oscillations that occur while the wave

V. AVOIDED CROSSING EXAMPLES packet is still in the region of the crossing.

For the quantum-classical propagations the initial wave
packet has to be transformed into phase space. The corre-

In order to demonstrate the difference in the quality ofsponding Wigner transform yields
approximation of a time evolving density matrix by the dif- a2 5
ferent sur_face hoppmg_methods, we_choose a smgl_e crossing Xll(R,P,t:O)ocex;{ — 2 (P—Py)?— —(R—Ry)?|.
characterized by the diabatic potential energy mattix, 2 a

A. Single crossing

(5.3

For the trajectory-based SHT method described in Sec. IV B,
with A=B=1 and C=0.1. The corresponding adiabatic phase-space points are sampled from this distribution. For
potential-energy curve;(R),E»(R), exhibiting an avoided the novel GPP-based SHG method described in Sec. IV C,
crossing, effective potentid;»(R), and first-order nonadia- this distribution is decomposed into a number of narrow
batic couplingC,, are shown in Fig. 2. Initially, the system GPPs as described in Ref. 72 in more detail. Note that this
is assumed to be in a pure state, in this case the upper adigecomposition works also for the more general case of
batic state. It is characterized by a Gaussian wave packet Wigner distributions which are not positive everywhere. We

Vi(R)=AR?, V,i(R)=B/R, V;sR)=C, (5.2

the heavy-particle degree of freedom, compare the population of the upper state(t)
1 =[dRfdPyx,R,P,t), obtained for 100 trajectories and
Xl(R,tzO)ocex;{iPo —;(R—Ro)2 , (5.2 GPPs, respectively, in Fig. 3. Using the same sequence of

pseudorandom numbers for the stochastic treatment of the
with Ry=0.4 which is located in the strongly repulsive re- hopping proces$4.24) and (4.25, the SHG method yields
gime of the upper adiabatic state, with initial momentummuch better agreement with the fully quantal results than the
Po=100 and with a width parameter a=0.1. The small- SHT method. In principle, the results for the latter can be
ness parameter=ym/M =0.01 was chosen to resemble the converged towards the numerically exact quantum-
mass ratio of electrons and nuclei typically encountered irmechanical result by increasing the number of particles to a
molecular dynamics. few thousand. This is because the packet passes the crossing
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FIG. 4. Single-crossing example: expectation value of energy: numerically

exact, fully quantum-mechanical simulati¢fQM” ), surface hopping tra-  FIG. 5. Dual-crossing example: adiabatic potential energy culzgiR)
jectories ("SHT” ), and surface hopping Gaussian phase-space packetand E,(R), governing the transport of densitigsolid line, mean-
("SHG" ). H stands for the total Hamiltoniard’ stands for the diagonal arithmetical surfaceE,(R), for the transport of coherendelotted ling,
part (neglecting kinetic coupling and nonadiabatic couplinG,,(R)/6 (dashed ling

region so fast that the transport of the coherence does not
play an important role. Nevertheless, this result demonstratedf the second crossing. Hence, a correct propagation of the
the effect of better sampling of the densities in phase spac@ensities and/or coherence in the region between the two
by finite-width GPPs. crossings is of great importance. The diabatic interactions for
A similar picture emerges for the conservation of energyour test model are
(see Fig. 4 The fully quantum-mechanical result obtained v/ (R)=AR?, V,(R)=B, V;4R)=C, (5.4)
using the FFT-based split-operator scheme is numerically ex- ]
act with the quantum-mechanical expectation valdg for with the parameters choséx=B=1 and C=0.1 (see Fig.
the (adiabati¢ Hamiltonian of Eq.(2.16 being practically - Note that for this example the gradient of the mean-
constant. For comparison, we also calculated the expectatigifithmetic  potential-energy  surface E;(R)=[Ey(R)
value of the diagonal pat’(R)=E(R) — €2A/2 only, i.e., + I_Ez(R)]IZ_governmg the transport of t_he C(_)herem_:e is sig-
neglecting the kinetic couplin€(R),T(R) in Eq. (2.16. nlflcantly_dlfferent from _e_ach of _the adiabatic gr§d|ents for
The energy(H') oscillates significantly as the wave packet propagatlon of the den_sme;. Initially, Fhe system Is assumed
passes the region of the avoided crossing. Note that thed@ be in the lower adiabatic state with a Gaussian-shaped
oscillations are in phase with the Stueckelberg oscillations of@ve function(5.2) or density(5.3) centered aRy=—4.0
the population dynamics displayed in Fig. 3. A straightfor-With initial momentum P,=20, width a,=0.2991, and
ward implementation of the SHT scheme without momentum
adjustment shows that the course (bf') can be qualita-
tively reproduced by the quantum-classical expectation value
(H")w as defined in Eq(3.12 where H(R,P)=E(R)
+P?/2 is the diagonal part of Eq3.6). Note that the total
energy(H)y is not available for the traditional SHT method
of Ref. 22. This behavior clearly indicates that the SHT al-
gorithm without momentum adjustmef#t.26) correctly re- —~ 0.9
produces the quantum result for the single-crossing example. = )
On the contrary, applying the momentum adjustment would 2 :
even deteriorate the result by enforcing an unphysical “en- -
ergy conservation” fo{H’ ),y instead of H)y,. The result of 0.8

the SHG-based simulation is also displayed in Fig. 4. Apart
from statistical fluctuations the total energii),, remains
constant. Again, the results can be converged employing an
increasing number of GPPs.

B. Dual crossing

— QM -
.-« SHT

-- SHG

L

0.7

The second model problem to be considered here corfz/G. 6. Dual-crossing example: population of lower adiabatic state versus

- - it ; ; :fime for initial momentumPy=20: numerically exact, fully quantum-
sists of a pair of states exhibiting two avoided crossings. Th|$n echanical simulatiof*QM” ). surface hopping trajectorigsSHT” ). and

case is much more demanding fOI" any classically basegace hopping Gaussian phase-space paék@G” ). Note that for both
theory due to the importance of possible interference effectge SHT- and SHG-based simulations 500 particles have been used.
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T T T worked out allowing for a quantum treatment of the most
important degrees of freedom. More specifically, the
guantum-classical Liouville equation has been derived as a
first-order approximation to the partial Wigner transform of
- the quantum Liouville equation in the smallness parameter
N 0.9 - e=+m/M characterizing the deviation from adiabatic behav-
.."..L A A ior. Algorithms for the numerical treatment of the QCLE can
3 i A 7 be derived from a Trotter splitting of the time evolution su-
peroperator and a stochastically based representation of den-
A — QM |- g ; -
A A SHT sities and cohere_nces. I_n particular it has been shoyvn how
A O SHG| - the surface hopping trajectory procedifrean be derived
from the QCLE essentially relying on two additional as-
0.7 L1l sumptions: namely, the momentum jump approximation and
10 20 30 40 50 the transport of coherence along with the densities. The limi-
Po tations of this approach can be overcome in the SHG ap-
FIG. 7. Dual-crossing example: population of lower adiabatic state versu?roaCh using sets of surf"f‘(}e hopping Gaussmp phase-space
initial momentum of the wave packet for the final time 12: numerically ~ Packets to represent densities and coherences in phase space.
exact, fully quantum-mechanical simulati¢fQM” ), surface hopping tra- The possibility to evaluate the action of nonlocal operators in
j?ctorieis (*SHT” ), and surface hopping Gaussian phase-space paCkEtﬁhase space, too, allows us to perform simulations beyond
(SHE™). the momentum jump approximation. The additional numeri-
cal effort for adjusting the amplitudes of the GPPs at every

smallness parameter- ym/M = 1/2000. We used 500 tra- M€ Step has to be compared with the main advantage over
jectories or 500 GPPs to represent the densities and the sal 1 mu_ltlple-threadlng algorlthms Whl(.:h are I|m|te_d b%/ﬁ:he
number to represent the coherence. steep rise of the number of particles with propagation time.

Our results are displayed in Fig. 6. The numerically ex—In cogltras']tc, ggschsme propofsc:rcli hgreitrequwes anly afmﬁdest
act quantum propagation displays the following behaviorY™M eLO P 'ts _edctause t(')l € trewaﬁr_rﬁamplng qd phase
Upon passing the first crossing Rt — 1, about 10% of the space by a Tinite-wi particie-me | NESE consiaer

population is transferred to the upper adiabatic state. Subsﬁ_—flons,,make t_he r_10vel algorithm espemall_y promising in -on
quently, the two parts of the wave packet arrive at the secon e fly _comb|nat|on of mo!ecular dynamics witab |n|t!o
crossing where the interference is such that the population Igalculathns of the electron!c structure where each trajectory
roughly unchanged: i.e., constructive and destructive effects numerically very expensive.

are balancing each other. The population dynamics is repra- Another field where the Gaussian-based SHG algorithm

duced correctly by the trajectory-based SHT procedure onl;'/s potentially very useful is the dynamics of molecules inter-

for the time span of the passing of the first crossing (?Ct.mgt W'trl]a(pu%eg'_l:_?_ht' Prevu;uts attenr:pti atfappl;;]lng tT)e
<6). At later times the overcoherent nature of this algorithm rajectory-base approach fo such situations have been

leads to a largely overestimated population transfer at th ar_n_pered by d|ff|cu|t|es_ with the treatment of the coherence,
imiting the use of this method to the regime of long

second crossing. This failure is remedied by the Gaussian-

based SHG algorithm, yielding very good agreement Withwavelength§.7’7gln recent work this problem is overcome by

the fully quantum-mechanical simulation. This is a direct? stochastic implementation using particle hopping between

H “ 9 »
consequence of the correct modeling of the individual trans;g"cferent Floguet states of the “dressed molecufé.

port of densities and coherence. The failure of the trajectory-

based method does not occur for the dual crossing examplRCKNOWLEDGMENTS
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