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In mixed quantum-classical molecular dynamics few but important degrees of freedom of a
molecular system are modeled quantum mechanically while the remaining degrees of freedom are
treated within the classical approximation. Such models can be systematically derived as a
first-order approximation to the partial Wigner transform of the quantum Liouville-von Neumann
equation. The resulting adiabatic quantum-classical Liouville equation~QCLE! can be decomposed
into three individual propagators by means of a Trotter splitting:~1! phase oscillations of the
coherences resulting from the time evolution of the quantum-mechanical subsystem,~2! exchange
of densities and coherences reflecting non adiabatic effects in quantum-classical dynamics, and~3!
classical Liouvillian transport of densities and coherences along adiabatic potential energy surfaces
or arithmetic means thereof. A novel stochastic implementation of the QCLE is proposed in the
present work. In order to substantially improve the traditional algorithm based on surface hopping
trajectories@J. C. Tully, J. Chem. Phys.93, 1061~1990!#, we model the evolution of densities and
coherences by a set of surface hopping Gaussian phase-space packets~GPPs! with variable width
and with adjustable real or complex amplitudes, respectively. The dense sampling of phase space
offers two main advantages over other numerical schemes to solve the QCLE. First, it allows us to
perform a quantum-classical simulation employing a constant number of particles; i.e., the
generation of new trajectories at each surface hop is avoided. Second, the effect of nonlocal
operators on the exchange of densities and coherences can be treated beyond the momentum jump
approximation. For the example of a single avoided crossing we demonstrate that convergence
towards fully quantum-mechanical dynamics is much faster for surface hopping GPPs than for
trajectory-based methods. For dual avoided crossings the Gaussian-based dynamics correctly
reproduces the quantum-mechanical result even when trajectory-based methods not accounting for
the transport of coherences fail qualitatively. ©2002 American Institute of Physics.
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I. INTRODUCTION

One of the ultimate challenges in the field of modeli
molecular dynamics is to explore the role of quantum effe
While fully quantum-mechanical investigations are presen
and most probably also in the near future, limited to t
study of relatively small molecules,1 the vast majority of
studies of larger systems is still restricted to the regime of
classical approximation.2 However, driven by recent exper
mental progress mainly in the field of ultrafast spectrosco
there is a strong impact to include at least the most impor
quantum effects in studies of larger and, eventually, biolo
cally relevant molecules.3 The development of correspondin
theoretical models still poses a great challenge.4 Most of the
present approaches consider the dynamics of a small
system~‘‘system’’! interacting with the remaining degrees
freedom~‘‘bath’’ ! using reduced density matrix technique5

to describe relaxation and dephasing. In most cases, h
ever, these models rely on strongly simplified models for
coupling between the dynamics of system and bath and
not provide a fully microscopic model.

a!Author to whom correspondence should be addressed. Electronic
burkhard@math.fu-berlin.de
11070021-9606/2002/117(24)/11075/14/$19.00
s.
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Mixed quantum-classical schemes offer a complem
tary approach. The underlying idea is to attribute quant
effects to a subsystem of the molecule under considerat
whereas it is sufficient to treat the remaining degrees of fr
dom by means of standard classical molecular dynam
Usually the separation of the subsystems is motivated by
disparate mass scales, e.g., the electronic dynamics in stu
of vibronic effects or the proton dynamics in investigatio
of hydrogen transfer systems. The main advantage of su
method is that it treats at least the most important degree
freedom quantum mechanically, even for very large biom
lecular systems.6,7 In particular, nonadiabatic effects whic
are known to be of paramount importance in many pho
physical, photochemical, and photobiological applicatio
can be accounted for.8,9At the same time, the overall numer
cal effort does not considerably exceed that of a purely c
sical trajectory simulation.

The earliest variants of such hybrid schemes were ba
on the assumption of separability of the wave functions
the two subsystems interacting with each other throu
mean-field potentials and employ a classical approxima
for the heavy-particle subsystem.10–12 More recently the
asymptotic properties of such models have been studied
more mathematical rigor.13–15 Applications range from the
il:
5 © 2002 American Institute of Physics
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study of reaction dynamics16 and vibrational relaxation17 up
to proton-transfer processes in enzymes.18–20

The empirically based surface hopping scheme rep
sents a first attempt to overcome the limitation
separability.21–23 Owing to the intuitive concept of surfac
hopping as well as the favorable scaling properties of
numerical effort of this trajectory-based implementatio
modified versions of the original algorithm are still com
monly used in many studies of nonadiabatic molecu
dynamics24–32where the recently devised continuous surfa
switching technique can be regarded as a hybrid versio
mean-field and surface hopping methods.33–35

During the last few years mixed quantum-classical
proaches to molecular dynamics were given a more rigor
foundation through the advent of the quantum-classical Li
ville equation~QCLE!.36–40 Based on the elegant formula
tion of the classical limit of quantum mechanics in pha
space by means of the Wigner transform,41–46the QCLE can
be obtained as a partial Wigner transform of the origi
quantum Liouville-von Neumann equation.47–50Note that re-
cently this approach has been extended towards statis
mechanics of mixed quantum-classical systems, includ
coupling to a dissipative environment.51,52

Related recent work is devoted to the construction
practical algorithms to solve the QCLE numerically usi
‘‘multithreading’’ stochastic particle schemes.53–55 The idea
behind these methods is to propagate interactingd-like par-
ticles in phase space to model the evolution of densities
coherences separately. While these approaches open the
towards higher dimensionality by providing an in princip
correct stochastic realization of the QCLE, there is a sev
limitation: Typically, at each nonadiabatic event, a copy o
particle has to be created, thus leading to a steeply increa
number of threads with time. One way to improve the sa
pling of phase-space distribution functions is to replace
d-like trajectories by finite-width basis functions, explorin
more or less large volumes of phase space at once.56,57A first
realization of this technique in the field of nonadiaba
quantum dynamics is ‘‘multiple spawning’’ using a basis
frozen Gaussian packets58 which is allowed to dynamically
expand and contract.59,60 Applications of the full multiple
spawning method to biomolecular processes have been
ported in Ref. 61.

In the present paper we seek for a combination of
respective advantages of the approaches described abo
construct a novel, stochastic algorithm to solve the QC
On the one hand, the trajectory-based surface hopping
proach keeps the number of particles constant, thus limi
the numerical effort. On the other hand, Gaussian pac
offer a much better sampling of phase space and, furt
more, allow the evaluation of nonlocal operators. Hence,
efficient simulation technique will consist of propagating s
of Gaussian phase space packets~GPPs! to model the time
evolution of densities and coherences where the amplitu
of the latter ones may be complex to incorporate quantu
mechanical phase effects. A stochastic criterion will gov
the hopping of GPPs between different states of the quan
subsystem. Moreover, an adjustment of the amplitudes of
GPPs can be used to avoid spawning.39 Thus, the propaga
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tion of surface hopping GPPs is expected to inherit the
vorable scaling properties of trajectory-based implemen
tions of the QCLE, while avoiding the increase of th
number of particles with simulation time. Hence, it provid
a promising tool for the description of medium to large mo
ecules.

The remainder of this paper is organized as follows: S
tion II presents a fully quantum-mechanical model of m
lecular dynamics based on a diabatic or adiabatic repre
tation of the density and Hamiltonian operator. Subsequen
a quantum-classical description is derived in Sec. III
means of partial Wigner transforms. Section IV presents
merical schemes to solve the QCLE and their implemen
tion in terms of surface hopping techniques. Numerical sim
lations in Sec. V illustrate the use of these methods.

II. FULL QUANTUM DYNAMICS

A. Quantum Liouville equation

Let us consider a physical or chemical multicompone
system composed of a heavy particle of massM and a light
particle of massm which are described by two sets of pos
tion and momentum operatorsR̂,P̂ and r̂ ,p̂, respectively.
Generalization to the case of several heavy and/or lig
particles is straightforward by expressing positions and m
menta in terms of vectors of lengthd or D, respectively. The
dynamics of the system can be characterized by the foll
ing quantum-mechanical Hamiltonian operator:

Ĥ~ r̂ ,p̂,R̂,P̂!5V̂~ r̂ ,p̂,R̂!1
1

2M
P̂2, ~2.1!

where the kinetic energy of the heavy particle is separa
from the Hamiltonian of the light-particles which may b
considered as potential energy acting on the heavy parti

V̂~ r̂ ,p̂,R̂!5Û~ r̂ ,R̂!1
1

2m
p̂2, ~2.2!

with the potential energy operatorÛ depending on the posi
tions of both components.

The dynamics of the system is governed by t
quantum-mechanical Liouville-von Neumann equation

] tr̂~ t !52
i

\
@Ĥ,r̂~ t !#2[2

i

\
L̂r̂~ t !, ~2.3!

where the commutator@•,•#2 of the density operatorr̂ with
the HamiltonianĤ of the system under consideration ca
also be regarded as a Liouvillian~super!operatorL̂ acting on
r̂. Note that in the present paper we shall restrict ourselve
the case of a pure quantum state,

r̂~ t !5uc~ t !&^c~ t !u, ~2.4!

where the quantum Liouville equation is equivalent to t
time-dependent Schro¨dinger equation. However, a genera
zation to the case of mixed states, e.g., for a thermal
semble of quantum states, is possible.51

As a first step we introduce a position-space represe
tion for the heavy-particle degrees of freedom, enabling u
write states and densities as
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c~R,t !5^Ruc~ t !& and r̂~R,R8,t !5^Rur̂~ t !uR8&,
~2.5!

where Dirac’s bra-ket notation refers to a scalar produc
the Hilbert space spanned byR. The corresponding Hamil
tonian operator of Eq.~2.1! becomes

Ĥ~R,R8!5S Û~ r̂ ,R!1
1

2m
p̂22

\2

2M
DRD d~R2R8!.

~2.6!

The above expressions forr̂(R,R8) andĤ(R,R8) have to be
understood as a family of quantum-mechanical operators
ing in the reduced Hilbert space spanned by the light-part
coordinater and which are parametrically dependent on
heavy-particle coordinatesR,R8. Note that later in the
course of this work a partial Wigner transform in the hea
degrees of freedom shall be used while the quantu
mechanical nature of light-particles as reflected by the op
tors r̂ ,p̂ shall be retained.

Following our earlier work, we now introduce an appr
priate scaling of time and energy,13

t̃ 5
\

AmM
t and Ũ5

m

\2 U, ~2.7!

which leads to the scaled quantum Liouville equation

] t̃ r̂~ t̃ !52
i

e
@ Ĥ̃,r̂~ t̃ !#2 , ~2.8!

where the dimensionless number

e5Am

M
~2.9!

serves as a smallness parameter. In particular, the lime
→0 leads to the adiabatic limit of quantum dynamics.13,50

The scaled Hamiltonian occurring in Eq.~2.8! is given by

Ĥ̃~R,R8!5
m

\2 Ĥ~R,R8!5S V̂̃~R!2
e2

2
DRD d~R2R8!,

~2.10!

with the scaled potential

V̂̃~R!5
m

\2 V̂~R!5 Û̃~R!1
1

2\2 p̂2. ~2.11!

After having given a representation of the Hamiltonian a
density operators in the heavy-particle coordinatesR, the
following two subsections deal with diabatic and adiaba
representations of the operatorsr̂ ,p̂ in the light-particle de-
grees of freedom. Furthermore, note that we will suppr
the tildes on the scaled quantities throughout the remain
of this article for notational simplicity.

B. Hamiltonian operator

In the following we will assume an orthonormal, com
plete basis set$ufdia&% to represent light-particle wave func
tions and operators inr ,

^f i
diauf j

dia&5d i j , ~2.12!
n

ct-
le
e

-
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where Dirac’s bra-ket notation is used here and through
the remainder of this paper for the scalar product inr only.
Using thisdiabatic basisset, the light-particle Hamiltonian
@second and third terms on the right-hand side~RHS! of Eq.
~2.10!# can be represented by a matrix with entries

Vi j ~R!5^f i
diauV̂~R!uf j

dia&. ~2.13!

Hence, the diabatic matrix representation of the total Ham
tonian ~2.10! can be written as

Hdia~R,R8!5S V~R!2
e2

2
DRD d~R2R8!. ~2.14!

It is noted that each of the entries of the matricesV(R) and
Hdia(R) corresponds to an operator acting on the hea
particle degrees of freedom. Hence, in the diabatic repre
tation of quantum dynamics, the heavy-particles are rep
sented by densities~or wave functions! moving along the
diabatic potential energy surfacesVii (R) coupled through the
off-diagonal elementsVi j (R).

The adiabatic basisis defined by a unitary transforma
tion of the diabatic basis such that the representation of
light-particle Hamiltonian is diagonal with eigenvalues

Ei~R!d i j 5^f i
adi~R!uV̂~R!uf j

adi~R!&, ~2.15!

which define our adiabatic~Born-Oppenheimer! potential en-
ergy surfaces. The new basis parametrically depends on
heavy-particle positionsR because the diabatic potential e
ergy matrix~2.13! has to be diagonalized for every value
R. The corresponding matrix representation of the to
Hamiltonian~2.10! is given by

Hadi~R,R8!5S E~R!2
e2

2
@DR12C~R!•¹R1T~R!# D

3d~R2R8!, ~2.16!

whereE is a diagonal matrix with entriesEi(R) and the last
two terms are due to the action of the kinetic operatorDR on
theR-dependent adiabatic basis functionsufadi(R)& which is
the origin of nonadiabatic effects in this representation
quantum dynamics. In particular, the matrix elements of
first- and second-order nonadiabaticity operators are gi
by

Ci j
k ~R!5^f i

adi~R!u¹Rk
uf j

adi~R!&, ~2.17!

Ti j ~R!5^f i
adi~R!uDRuf j

adi~R!&, ~2.18!

where the dot product in third term on the RHS of Eq.~2.16!
has to be understood asCi j (R)•¹R5(k51

D Ci j
k (R)¹Rk

. The
first-order coupling operator is anti-Hermitian with respect
interchange of the indicesi , j ,

Ci j
k 52~Cji

k !* , ~2.19!

while there exists no such relation for the matrixT. To sum-
marize the adiabatic picture of quantum dynamics,
heavy-particles are represented by densities~or wave pack-
ets! moving along the adiabatic potential-energy surfac
Ei(R) while the nonadiabaticity operatorsC(R),T(R) in-
duce nonadiabatic couplings.
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C. Density operator

In analogy to what was shown in the previous section
will derive representations of the density operator using
ther one of the two basis sets for the state vectors of the l
particle. We begin by expanding the total wave function
the system using thediabatic representation~2.12!,

x i
dia~R,t !5^f i

diauc~R,t !&, ~2.20!

where the expansion coefficientsx i
dia(R,t) are readily iden-

tified as time-dependent wave functions of the hea
particles. The corresponding density matrix in the diaba
basis is given by

r i j
dia~R,R8!~ t !5^f i

diaur̂~R,R8,t !uf j
dia&[Xi j

dia~R,R8,t !,
~2.21!

in which every matrix elementXi j
dia stands for a~diabatic!

position-space density matrix of the heavy-particles inR,R8:

Xi j
dia~R,R8,t !5x i

dia~R,t !„x j
dia~R8,t !…* . ~2.22!

Alternatively, the total wave function can be written inadia-
batic representation

x i
adi~R,t !5^f i

adi~R!uc~R,t !&. ~2.23!

Accordingly, the density matrix can be expanded in the ad
batic basis set obtained for some value ofR,

r i j
adi(R)~R8,R9,t !5^f i

adi~R!ur̂~R8,R9,t !uf j
adi~R!&

5(
mn

F im~R,R8!Xmn
adi~R8,R9,t !

3Fn j~R9,R!, ~2.24!

whereXadi is defined in analogy toXdia in Eq. ~2.22! but for
the adiabatic heavy-particle densities. The scalar produc
adiabatic basis functions for different positionsR can be ex-
panded in a Taylor series using Eqs.~2.17! and ~2.19!,

F i j ~R,R8!5^f i
adi~R!uf j

adi~R8!&5d i j 1~R82R!•Ci j ~R!

1O„~R82R!2
…, ~2.25!

where the dot product has to be understood in a similar w
as in Eq. ~2.16!. Finally, the expression for the adiabat
representation of the density is obtained as

r i j
adi(R)~R8,R9,t !5Xi j

adi~R8,R9,t !1~R82R!

•„C~R!Xadi~R8,R9,t !…i j 2~R92R!

•„Xadi~R8,R9,t !C~R!…i j 1O~dR2!,

~2.26!

where the notationdR indicates the order of magnitude o
R82R or R92R. In contrast to the diabatic representatio
the elements of the adiabatic density matrixradi do not sim-
ply equal the corresponding heavy-particle densityXadi but
contain additional terms originating from theR dependence
of the adiabatic basis functions. In order to be consistent w
the error estimates in the forthcoming sections we have g
here only the expression up to first order indR. However, it
is straightforward to calculate higher terms. Furthermore
e
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is noted that we haver i j
adi5Xi j

adi for vanishing nonadiabatic
ity, e.g., for the regions far off avoided crossings or inters
tions.

III. PARTIAL WIGNER TRANSFORMS

A. Definition

The Wigner transform is a well-established tool to re
resent quantum dynamics in phase space.41–44In particular, it
can be shown that the equations of motion for Wigner dis
bution functions have a well-defined classical limit for\
→0. In order to derive a quantum-classical formulation f
the dynamics of a system comprising of light and hea
particles, we shall employ a partial Wigner transform w
respect to the coordinates of the latter and consider the l
e→0. As will become more transparent in the followin
such a representation of dynamics allows for a description
the degrees of freedom of the heavy-particles in the class
limit while still incorporating quantum effects connecte
with the light-particle dynamics.47,50Thus the partial Wigner
transform provides a suitable tool for a quantum-class
description of dynamics. Using the scaling introduced in E
~2.7!, the partial Wigner transformAW(R,P,t) of the ~diaba-
tic or adiabatic! matrix representationA(R,R8,t) of a
quantum-mechanical operatorÂ( r̂ ,p̂,R̂,P̂,t) can be written
as

AW~R,P,t !5E
RD

AS R2
e

2
J,R1

e

2
J,t DeiP•JdJ,

~3.1!

where an additional factor (2p)2D has to be used to obtai
the correct normalization for the Wigner distribution functio
rW as a partial Wigner transform of the density matrixr.
Note again thatAW(R,P,t) stands for a matrix of functions
in classical phase space with each of the matrix eleme
corresponding to a pair of~diabatic or adiabatic! states of the
system.

In the next two sections, the effect of the partial Wign
transforms on the Hamiltonian and on the density operato
explained separately before finally the quantum-class
equations of motion are derived.

B. Hamiltonian operator

In this section we want to apply the technique of part
Wigner transforms to the total Hamiltonian~2.10! of a sys-
tem of light and heavy-particles. The transform of the diab
tic representation given in Eq.~2.14! is straightforward

HW
dia~R,P!5V~R!1 1

2 P2. ~3.2!

When Wigner transforming the adiabatic representat
~2.16! of the total Hamiltonian of the system, we make use
the relation for the Wigner transform of a product
operators,41–45

~AB!W5AWe~e/2i ! LBW5AWBW1
e

2i
AWLBW1O~e2!,

~3.3!
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whereL stands for the Poisson bracket operator:62

AWLBW5$AW ,BW%5¹PAW•¹RBW2¹RAW•¹PBW .
~3.4!

Applying this rule to the first-order nonadiabatic coupling
the third term on the RHS of Eq.~2.16! we have50

~eC~R!•e¹R!W5eC~R!• iP2
e2

2
¹R•C~R!, ~3.5!

where all terms of higher order ine vanish. Hence, the partia
Wigner transform of the total Hamiltonian in adiabatic re
resentation can be expressed by

HW
adi~R,P!5E~R!1

1

2
P22 i eC~R!•P1

e2

2
¹R•C~R!

2
e2

2
T~R!, ~3.6!

which again has to be understood as a matrix of function
classical phase space.

C. Density operator

In this section the partial Wigner transforms of the de
sity operator shall be derived. First, the diabatic density m
trix shall be considered. Inserting Eq.~2.21! into Eq. ~3.1!
with R85R2eJ/2 andR95R1eJ/2, it is straightforward
to obtain the transform of the density. It can be written a
matrix of Wigner distribution functions inR and P with
entries

rW,i j
dia ~R,P,t !5

1

~2p!D E
RD

Xi j
diaSR2

e

2
J,R1

e

2
J,tDeiP•JdJ

[XW,i j
dia ~R,P,t !, ~3.7!

where each of the matrix elements simply equals the Wig
transform of the density of the heavy-particles only. Usi
the adiabatic representation~2.26! this expression for the
partial Wigner transform has to be replaced by

rW,i j
adi ~R,P,t !5

1

~2p!D E
RD

Xi j
adiS R2

e

2
J,R1

e

2
J,t D

3eiP•JdJ2
e

2~2p!D E
RD

J•@~CXadi! i j

1~XadiC! i j #e
iP•JdJ1O~e2!

5XW,i j
adi ~R,P,t !1

i e

2

3„@C~R!,¹PXW
adi~R,P,t !#1…i j 1O~e2!,

~3.8!

where@C,¹PXW
adi#15(k51

D @Ck,¹Pk
XW

adi#1 stands for a gener
alized form of the anti-commutator@A,B#15AB1BA and
whereXW

adi is defined in analogy toXW
dia in Eq. ~3.7! but for

the adiabatic heavy-particle densities. As stated previou
the first-order correction term is due to the fact that the ad
batic basis for the light-particle Hamiltonian parametrica
depends on the coordinatesR of the heavy-particles.
in

-
-
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D. Quantum-classical Liouville equation

In order to obtain a quantum-classical equation of m
tion for the system under consideration, we have to calcu
a partial Wigner transform of the quantum Liouville equati
~2.8!. Replacing all expressions by the respective transfo
and using again the first-order expression for the Wig
transform~3.3! of products of operators one readily obtai
the QCLE

] trW52
i

e
@~Hr!W2~rH !W#

52
i

e
@HW ,rW#22

1

2
~$HW ,rW%2$rW ,HW%!

1O~e!. ~3.9!

As will become more evident in the following section, th
first term on the right-hand side of the above equation
scribes the purely quantum dynamics of the light-partic
while the second and third terms contain both the dynam
of the heavy-particles and genuinely quantum-class
terms.

In order to apply this equation to a particular system
have to choose a certain representation for the transfor
densityrW and the transformed HamiltonianHW . Using the
diabatic representation introduced above, we have to in
Eqs.~3.2! and~3.7! into Eq. ~3.9!. Evaluating the commuta
tor and the Poisson brackets we obtain thediabatic QCLE

] tXW
dia~R,P,t !52

i

e
@V~R!,XW

dia~R,P,t !#2

2P•¹RXW
dia~R,P,t !

1
1

2
@¹RV~R!,¹PXW

dia~R,P,t !#11O~e!.

~3.10!

Similarly, by inserting Eqs.~3.6! and~3.8! into Eq. ~3.9! the
adiabatic QCLEis derived:

] tXW
adi~R,P,t !52

i

e
@E~R!2 i eP•C~R!,XW

adi~R,P,t !#2

1
1

2
@E~R!,@C~R!,¹PXW

adi~R,P,t !#1#2

2P•¹RXW
adi~R,P,t !

1
1

2
@¹RE~R!,¹PXW

adi~R,P,t !#11O~e!.

~3.11!

E. Discussion

It is worthwhile to compare the present derivation of t
quantum-classical Liouville equation with other approach
in the literature. Based on previous work on semiclass
propagators by Krauseet al.,63 Mukamel,57 Martens and
co-workers,38,39,64and Hartmannet al.65 have used quantum
classical equations of motion which are very similar to t
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ones obtained here. However, they used a truncated Wig
Moyal series expansion for the transform of products@see
Eq. ~3.3!# in \ and not ine5Am/M . Hence, their expres
sions reflect the traditional derivation of classical dynam
in the \→0 limit.66 The expansion in the smallness para
etere was introduced in more recent work to rigorously e
tablish a quantum-classical limit of the quantum Liouvi
equation.47,50

Furthermore, we would like to emphasize that in t
present study the original quantum Liouville equation~2.3!
describing the full quantum dynamics is first expressed i
~diabatic or adiabatic! representation and then~partially!
Wigner transformed. This is in contrast to other recent st
ies where the density and Hamiltonian operator are fi
Wigner transformed and then expressed in a~diabatic or
adiabatic! representation.38,47–49,53–55,64Although being for-
mally equivalent, those studies give the evolution directly
terms of the heavy particle densitiesXW

adi. Our approach,
however, also allows for the construction of an equation
motion for the full adiabatic densityrW

adi by direct insertion
of Eq. ~3.6! into Eq. ~3.9! without using Eq.~3.8!. The re-
sulting QCLE forrW

adi is identical to Eq.~3.11! but does not
contain the second commutator which is difficult to tre
numerically because of the nonlocal operator¹P ~see below!.
Nevertheless, it has been shown that the simplified propa
tion yields aO(e) approximation to the quantum-classic
expectation values of physical quantities:50

^A&W5E
RD
E

RD
tr~XW

adiAW
adi!dRdP. ~3.12!

Furthermore, note thatXW
adi and rW

adi coincide in spatial re-
gions with vanishing kinetic couplingC(R). This is of prac-
tical importance for simulations where both the initial a
final states are far from the coupling regions. In these cas
is sufficient to propagaterW

adi instead ofXW
adi if intermediate

steps are not to be considered.

IV. NUMERICAL REALIZATION

A. Superoperator splitting

In the following we want to construct a numerical prop
gator for the solution of the adiabatic QCLE~3.11! neglect-
ing all first- and higher-order terms in the smallness para
etere. Using a simplified notationX5XW

adi, the evolution of
the adiabatic density can be expressed as

] tX~R,P,t !52
i

e
L̂X~R,P,t !, ~4.1!

with the formal solution
er-

s
-
-

a

-
t

f

t

a-

it

-

X~R,P,t !5expS 2
i t

e
L̂DX~R,P,0!. ~4.2!

In close analogy to the use of Trotter or Strang splitti
schemes for the solution of the time-dependent Schro¨dinger
equation,67–69a numerical solution of the adiabatic QCLE
realized by a Trotter splitting of the time evolution supero
erator into three parts

L̂5L̂11L̂21L̂3 , ~4.3!

which allows for a discretization of the solution~4.2! using
small time stepst5O(e),

X~R,P,t1t!5expS 2
i t

e
L̂1DexpS 2

i t

e
L̂2D

3expS 2
i t

e
L̂3DX~R,P,t !1O~e2!, ~4.4!

where the individual superoperators are given by

2
i

e
L̂1X~R,P,t !52

i

e
@E~R!,X~R,P,t !#2 , ~4.5!

2
i

e
L̂2X~R,P,t !5@2P•C~R!,X~R,P,t !#2

1
1

2
@E~R!,@C~R!,¹PX~R,P,t !#1#2 ,

~4.6!

2
i

e
L̂3X~R,P,t !52P•¹RX~R,P,t !

1
1

2
@¹RE~R!,¹PX~R,P,t !#1 . ~4.7!

In the following we want to discuss the propagators asso
ated withL̂1 , L̂2 , andL̂3 individually. For the sake of sim-
plicity consider a representation of the light-particle Ham
tonian that consists of two states only. Assuming the diab
potential matrixV to be real and symmetric, we obtain th
following eigenvalues:

E1,2~R!5 1
2 @V11~R!1V22~R!#

6 1
2 A@V11~R!2V22~R!#214V12

2 ~R!. ~4.8!

The corresponding first-order kinetic coupling matrix
found to be real and antisymmetric with off-diagonal e
ments:
C12~R!52C21~R!5
@V11~R!2V22~R!#¹RV12~R!2V12~R!¹R@V11~R!2V22~R!#

@V11~R!2V22~R!#214V12
2 ~R!

. ~4.9!
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In the following we will replace the~real! densities and the
~complex! coherences by a set of four real-valued pha
space functions. We introduce the sum and difference of
densities,

s~ t !5 1
2 @X11~ t !1X22~ t !#, ~4.10!

d~ t !5 1
2 @X11~ t !2X22~ t !#, ~4.11!

along with the real and imaginary parts of the coherence

r ~ t !5Re@X12~ t !#5 1
2 @X12~ t !1X21~ t !#, ~4.12!

j ~ t !5Im@X12~ t !#5
1

2i
@X12~ t !2X21~ t !#. ~4.13!

Phase oscillations(L1). The time evolution connected wit
the first superoperator~4.5! affects only the coherences~off-
diagonal elements ofX) while leaving the densities~diagonal
elements! unchanged. Hence, the time evolution can be
written as

] tS r ~ t !
j ~ t ! D5S 0 v

2v 0 D S r ~ t !
j ~ t ! D , ~4.14!

the solution of which is a rotation in the plane of the co
plex numbers,

S r ~ t1t!

j ~ t1t! D5S cos~vt! sin~vt!

2sin~vt! cos~vt!
D S r ~ t !

j ~ t ! D , ~4.15!

with Bohr frequencyv5(E12E2)/e. Obviously, this evolu-
tion can be traced back to the quantum-mechanical com
tator in Eq.~3.9! and is a purely quantum dynamical effec
While these phase oscillations can be neglected in the l
of very large energy gaps, they start to play an important r
in the region of avoided crossings where the phase oscill
only slowly.

Exchange(L2). As a first step, let us consider the tim
evolution connected with the first term on the RHS of E
~4.6! only. Note that neglecting the second term correspo
to propagation ofr instead ofX @see Eq.~3.8!#. Then the
time evolution reduces to

] tS d~ t !
r ~ t ! D5S 0 22z

12z 0 D S d~ t !
r ~ t ! D , ~4.16!

where we use the shorthand notationz5P•C12. The solu-
tion of these coupled equations is given by

S d~ t1t!

r ~ t1t! D5S cos~2zt! 2sin~2zt!

sin~2zt! cos~2zt!
D S d~ t !

r ~ t ! D , ~4.17!

describing a rotation in the (d,r ) plane with an angular fre
quency of 2z. Note that the imaginary partj (t) of the coher-
ence is not affected. Hence, by changingd(t), this propaga-
tor results in an exchange of density between the adiab
states,

X11~ t1t!5cos2~zt!X11~ t !1sin2~zt!X22~ t !

22 sin~zt!cos~zt!r ~ t !, ~4.18!

X22~ t1t!5sin2~zt!X11~ t !1cos2~zt!X22~ t !

12 sin~zt!cos~zt!r ~ t !, ~4.19!
-
e

-

-

u-

it
le
es

.
s

tic

where the first two terms on the RHS can be understood
Rabi-like oscillations of the populations and the third te
stands for transitions induced by the coherence of the
states. At the same time, Eq.~4.16! describes a change of th
~real part of the! coherencer (t) which can be understood a
a dephasing and rephasing of the corresponding wave f
tions in states 1 and 2.

If also the second term of Eq.~4.6! is taken into consid-
eration, we encounter the nonlocal nature of the quantu
classical propagation through the momentum derivativ
The time evolution ofr (t) in Eq. ~4.16! has to be replaced by

] tr ~R,P,t !52zd~R,P,t !

1@E1~R!2E2~R!#C12~R!•¹Ps~R,P,t !

5zS 11
S~R!

2
•¹PDX11~R,P,t !

2zS 12
S~R!

2
•¹PDX22~R,P,t !. ~4.20!

Assuming that the vectorS5(E12E2)C12/z is sufficiently
small, as is the case in the vicinity of an avoided crossi
this can be approximated by

] tr ~R,P,t !'z expS 1
S~R!

2
•¹PDX11~R,P,t !

2z expS 2
S~R!

2
•¹PDX22~R,P,t !

5zX11S R,P1
S~R!

2
,t D2zX22S R,P2

S~R!

2
,t D .

~4.21!

Hence, in the framework of the momentum jump approxim
tion the transfer of population of the quantum system is
sociated with a change of the momentum of the class
system to compensate for the difference of the potential
ergies of the adiabatic states.47

Transport(L3). Finally, the propagator associated wi
the third part of the time evolution operator is investigate
BecauseE is diagonal, the commutator in Eq.~4.7! can be
cast into purely classical Liouville equations describing
Hamiltonian flows for each entry of the density matrix,

] tXi j ~R,P,t !52
i

e H Ei j ~R!1
1

2
P2,Xi j ~R,P,t !J , ~4.22!

where the effective potentials are given byEi j 5(Ei1Ej )/
2: i.e., densities are transported along the correspond
adiabatic potential-energy surfaces while coherences are
ject to an arithmetic mean potential.

Summary. A diagram of the Trotter splitting~4.4! of the
adiabatic QCLE~3.11! is shown in Fig. 1. First, the phas
oscillations of the coherence are illustrated byL1 mixing the
real and imaginary partsr (t) and j (t) without changing the
difference of populations,d(t). Next the exchange operato
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L2 mixes populationsd(t) and coherencer (t). Finally, there
is transport under the influence ofL3 where each of the
densities and coherence is transported along its own effec
potential-energy surface.

A similar splitting scheme may also be applied to t
diabatic QCLE~3.10!. While eliminating the superoperato
L2 due to the absence of kinetic couplingC(R), there is
exchange through the off-diagonal elements of the poten
energy matrixV(R) in L1 . In contrast to the adiabatic de
scription, this transfer of densities and coherence occurs
fast time scaleO(1/e) which makes the diabatic QCLE nu
merically much less favorable. In addition, the dynam
connected withL3 becomes more difficult through the ad
vent of nonlocal operators connected with the potential c
pling Vi j (R).

B. Surface hopping trajectories

The simplest approach to a numerical solution of
adiabatic QCLE~3.11! leads to the well-known surface hop
ping trajectory~SHT! scheme which was originally derive
empirically.22–24 It is based on classical trajectories stoch
tically hopping between the adiabatic states of the quan
system. In order to demonstrate how this algorithm can
derived on the basis of the Trotter splitting of the adiaba
QCLE ~4.4!, we shortly summarize the concept of surfa
hopping in the following:

Representations. The densities are modeled using a s
of ~equally weighted! d-like point particles in classical phas
space:

Xii ~R,P,t !'
1

Nii
(
k51

Nii

d„R2Rii
k ~ t !…d„P2Pii

k ~ t !…. ~4.23!

FIG. 1. Interplay of the three propagators: effect ofL1 ~phase oscillations!,
L2 ~exchange!, andL3 ~transport! on the real-valued representation of th

density matrix expressed asd(t)5
1
2@X11(t)2X22(t)#, r (t)5Re@X12(t)#,

and j (t)5Im@X12(t)#. While L1 andL3 can be described as rotations of th
two quantities involved, the transportL3 acts differently on densities and
coherences.
ve

al

a
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e

-
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Assuming that the system is initially prepared in a sing
adiabatic statei , the ensemble of points$(Rii ,Pii )% is ob-
tained by Monte Carlo sampling from the initial Wigner di
tribution functionXii (R,P,t5t0). If more than one adiabatic
state is initially populated, the trajectories are distributed
cording to the respective densities. To allow for a coher
propagation, one has to associate a density matrix with e
of the trajectories. The initial value of the density matrix is
in the corresponding diagonal element and zero elsewh
Then time-dependent ensembles representing the multi
density at subsequent times are calculated by iterating
following three propagation steps for each member of
ensemble.

Phase oscillations (L1). The purely quantum-
mechanical time evolution associated withL1 is straightfor-
ward to realize by updating the phase of the coherence
cording to Eq.~4.15!.

Exchange(L2). The quantum-classical time evolutio
associated withL2 consists of two parts see@Eq. ~4.6!#. The
first one characterizing the exchange of densities and co
ences is easily realized by updating the density matrix
lowing Eq. ~4.17!. Upon linearization of the trigonometric
functions @becauset5O(e)] in Eqs. ~4.18! and ~4.19!, the
change per time step of the diagonal elements reads22

P1←2~ t !5X11~ t1t!2X11~ t !522ztr ~ t !, ~4.24!

P2←1~ t !5X22~ t1t!2X22~ t !52ztr ~ t !, ~4.25!

which determines the probability for a sudden hop of a t
jectory from one quantum state to the other one. In pract
a hop from statei to statej is realized whenever the prob
ability Pj← i exceeds a random number 0,:,1. The second
part of the propagator~4.6! associated withL2 can only be
treated in the framework of the ‘‘momentum jump’’ approx
mation of Eq.~4.21! while a direct solution of Eq.~4.20!
cannot be implemented within the framework of the tra
tional SHT approach. The momentum of the trajectories h
ping between states is changed such as to ensure cons
tion of the sum of the potential and kinetic energies,

1
2 Pj j

2 1Ej~Rk!5 1
2 Pii

2 1Ei~Rk!, ~4.26!

which implies the possibility of rejecting energetically fo
bidden transitions, where the kinetic energy is not suffici
to compensate a hop to an energetically higher state. N
that this is a reason often cited for the internal inconsiste
of the trajectory-based method.26,28

Transport(L3). The purely classical time evolution as
sociated withL3 is realized by transporting all members
the ensemble along their respective potential-energy surf
Ei(R) according to Eq.~4.22!. This can be achieved by an
of the algorithms commonly used in classical molecular d
namics simulations,70 e.g., the symplectic Verlet algorithm.

Discussion. The obvious shortcoming of the SHTs alg
rithm is that it does not correctly account for the transport
coherences. Instead it is assumed that a complete de
matrix is propagated with each of the trajectories in the
semble, thus enforcing the coherences to be transpo
along with the densities. In realistic quantum molecular d
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namics, however, one generally observes the coherenc
be transported into different regions of phase space as
cated by the different effective potentials in Eq.~4.22!. This
usually leads to a decay of coherence at the position of
densities. Hence, the traditional SHT algorithm typica
overestimates the coherence at the position where, e.g.
RHS of Eqs.~4.24! and~4.25! has to be evaluated. Note th
there exist suggestions to remedy the problem of ‘‘over
herence’’ in the literature.31,32

C. Surface hopping Gaussian phase-space packets

In order to overcome the above-mentioned disadvant
of the traditional trajectory-based surface hopping algorit
one can follow two different approaches: One obvious p
sibility is to model the evolution of the coherences by sets
trajectories with complex-valued weights. For anN-state
problem one has to propagateN(N11)/2 phase-space func
tions instead ofN functions in the traditional SHT approac
described above.22 While this does not present a major o
stacle for simulations where the dynamics is determined b
few states only, a more serious problem arises. In orde
evaluate equations such as Eqs.~4.16!–~4.21!, we need in-
formation about the coherence to propagate the density
certain point in phase space and vice versa. This type
information is a priori not available in the SHT approac
where phase-space functions are sampled byd-like particles
in phase space. A way to circumvent this problem is the
of spawning or multithreading algorithms which genera
new particles where needed. Despite the successful app
tion of such algorithms for a number of prototypical pro
lems in photophysics and photochemistry,55 the principle
limitation of this method lies in the rapidly growing numb
of particles with increasing time.

Representations. In the present work we rather sugge
an alternative approach to propagate both densities and
herences: In order to achieve a dense sampling of the cl
cal phase-space functions, one can represent them as a
of traveling GPPs replacing the classical point particles
Eq. ~4.23!,

Xi j ~R,P,t !'(
k51

Ni j

Ai j
k ~ t !gi j

k ~R,P,t !, ~4.27!

where the amplitudesAi j
k (t) of the Gaussians are real o

complex for the densities (i 5 j ) or for the coherences (i
Þ j ), respectively. Each of the Gaussian phase-space pa
in the above equation is parametrized in the following wa

gi j
k ~R,P,t !5exp$2a i j

k ~ t !@R2Ri j
k ~ t !#22b i j

k ~ t !@P2Pi j
k ~ t !#2

2g i j
k ~ t !@R2Ri j

k ~ t !#@P2Pi j
k ~ t !#%, ~4.28!

where Ri j
k (t),Pi j

k (t) give the position of the center of th
packet in phase space, anda i j

k (t),b i j
k (t),g i j

k (t) specify the
length and rotation of the axes of the elliptical contour of t
packet. Note that the dense sampling by GPPs allows
evaluate phase-space functions at any given point (R,P)
which is impossible for trajectory-based methods. Fo
mathematical proof of convergence of particle methods
Liouville-type equations see Ref. 71.
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The initial set of GPPs is obtained from the initi
Wigner distribution functionXii (R,P,t5t0) by means of a
novel algorithm for the optimal decomposition into GPPs
a given accuracy. For details the reader is referred to Ref.
Using the ansatz of Eqs.~4.27! and ~4.28!, a propagator of
the adiabatic QCLE using the Trotter splitting techniq
~4.4! is constructed as follows:

Phase oscillations(L1). The purely quantal evolution
~4.14! simply results in phase oscillations of the coheren
which can be achieved by updating the~complex! amplitudes
of the GPPs by multiplication with the highly oscillator
phase factors,

Ai j
k ~ t1t!5Ai j

k ~ t !exp~2 iv i j t!, ~4.29!

with the Bohr frequencyv i j 5(Ei2Ej )/e.
Exchange(L2). The quantum-classical exchange of de

sities and coherences is realized in the following way:
analogy to the trajectory-based surface hopping~SHT! ex-
plained in the previous section, we allow for a hopping of t
GPPs representing the densities according to the same c
rion ~4.24! and ~4.25! evaluated at the center of each of th
GPPs. Note that there is no adjustment of the momentum
the hopping GPP because the second commutator in
~3.11! can be treated beyond the momentum jump appro
mation ~see below!.

Following the hopping process, the densities and coh
ences have to be updated such as to fulfill the rotation gi
in Eq. ~4.17! as close as possible. The simplest way
achieve this is by readjusting the amplitudes only, wh
leaving the other parameters of the GPPs unchanged. C
sider, e.g., the change of densityX11 in the first adiabatic
state. Evaluation of the LHS of Eq.~4.18! at given points
(Rl ,Pl) in phase space leads to the following expression
the density after propagation for a time stept :

X11~Rl ,Pl ,t1t!5 (
k51

N11

A11
k ~ t1t!g11

k ~Rl ,Pl ,t1t!,

l 51,...,N11. ~4.30!

This allows us to rewrite Eq.~4.18! as a set of coupled linea
equations,

G•a5y, ~4.31!

wherea is the vector formed by the unknown ‘‘new’’ ampli
tudesak5A11

k (t1t), andy is the vector formed by the RHS
of Eq. ~4.18! evaluated at the points (Rl ,Pl) using represen-
tation ~4.27! in terms of known ‘‘old’’ GPPs:

yl5cos2~zt!(
k51

N11

A11
k ~ t !g11

k ~Rl ,Pl ,t !

1sin2~zt!(
k51

N22

A22
k ~ t !g22

k ~Rl ,Pl ,t !

22 sin~zt!cos~zt!(
k51

N12

Re@A12
k ~ t !#g12

k ~Rl ,Pl ,t !.

~4.32!
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Finally, the symbolG in Eq. ~4.31! stands for the squar
matrix with elements

Glk5g11
k ~Rl ,Pl , t1t!5exp$2a11

k ~ t1t!@Rl2R11
k ~ t1t!#2

2b11
k ~ t1t!@Pl2P11

k ~ t1t!#2

2g11
k ~ t1t!@Rl2R11

k ~ t1t!#@Pl2P11
k ~ t1t!#%, ~4.33!

where the quantitiesR11
k ,P11

k ,a11
k ,b11

k ,g11
k have already

been propagated for a time stept. A natural choice for the
points (Rl ,Pl) are the ‘‘new’’ centers @R11

k (t1t),P11
k (t

1t)# of the GPPs themselves, thus rendering the matrix
ements to be identical to the overlap of the GPPs. Note
in realistic simulations the numerical solution of Eq.~4.31! is
greatly facilitated by the fact that the matrixG is very sparse
because the overlap practically vanishes for GPPs that ar
from each other in phase space. Note that there is a varie
special algorithms designed for the efficient use of spa
systems.73 The amplitudes of the GPPs representing the d
sity of the second state,X22, are obtained by evaluating Eq
~4.19! in the same way. Analogously, the update~4.20! of the
complex amplitudes of the GPPs representing the coher
can be treated beyond the momentum jump approxima
~4.21! by analytically evaluating the action of the nonloc
operators (¹P) on the GPPs.

In summary, the solution of the above system of eq
tions ~4.31! yields the ‘‘new’’ amplitudesa in terms of the
‘‘old’’ amplitudes contained iny. It remains to be seen
whether it may be useful to update the widths and center
the GPPs, too. However, this would lead to a system of n
linear equations. Instead, it may be advisable to circumv
this difficulty and to compensate the reduced flexibility
the individual GPPs by employing a larger number of the

Transport (L3). The classical transport~4.22! of the
densities and coherences along their respective effec
potential-energy surfaces is realized in the framework of
locally quadratic approximation. Assuming that the GPPs
sufficiently narrow in position space, the potential-ene
function is approximately locally quadratic over the spat
width of a packet,

Ei j ~R!'Ei j „Ri j
k ~ t !…1¹REi j „Ri j

k ~ t !…•@R2Ri j
k ~ t !#

1 1
2 DREi j „Ri j

k ~ t !…@R2Ri j
k ~ t !#2. ~4.34!

Inserting this ansatz together with the GPP representa
~4.27! and ~4.28! into the classical Liouville equation~4.22!
leads to first-order equations of motion for the parameter
the GPPs~Ref. 56!,

] tRi j
k ~ t !5Pi j

k ~ t !,

] tPi j
k ~ t !52¹REi j „Ri j

k ~ t !…,

] ta i j
k ~ t !5g i j

k ~ t !DREi j „Ri j
k ~ t !…,

] tb i j
k ~ t !52g i j

k ~ t !,

] tg i j
k ~ t !522a i j

k ~ t !12b i j
k ~ t !DREi j „Ri j

k ~ t !…. ~4.35!

In analogy to earlier approaches to solve the time-depen
Schrödinger equation for the motion of Gaussian wave pa
ets, the center of the packet follows Hamilton’s classi
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equation of motion.58 These equations are solved routinely
classical molecular dynamics simulations using, e.g.,
leapfrog algorithm.70 The width and shape of the GPPs a
determined by the curvature of the potential-energy functi
A modified leapfrog algorithm for an efficient solution of th
above set of equations for GPP evolution which conser
both norm and energy has recently been developed.72 Note
that it is useful to monitor the GPP widths during propag
tion in order to check the validity of the locally quadrat
representation of the potential-energy surface~4.34!. Should
the widths increase beyond a certain threshold given b
typical length scale of the potential-energy function, t
simulation is suspended and the phase-space functions
refit by a new set of GPPs. A discussion of advanced al
rithms for classical GPP dynamics which are adaptive b
with respect to spatial and temporal discretization can
found in Ref. 74.

In multidimensional simulations the Laplacian in Eq
~4.34! and ~4.35! will have to be replaced by the Hessia
matrix. While this information is available, e.g., from ele
tron structure calculations for small to medium molecul
the calculation of the Hessian may represent a computati
bottleneck for large molecules. In that case the ‘‘thawe
GPPs as defined in Eq.~4.28! will have to be replaced by
‘‘frozen’’ packets:75 i.e., the shape matricesa,b,g are as-
sumed to be constant where the reduced flexibility will ha
to be compensated by using a larger number of GPPs.

Discussion. The principle of a SHG-based approach
the solution of the adiabatic QCLE by means of an ensem
of surface hopping GPPs should be clear from the previ
three paragraphs. However, the initial conditions dese
some attention. First of all, let us discuss the representa
of the densities. On the one hand, the GPPs have to be
enough to guarantee a dense sampling of phase space. O
other hand, they have to be sufficiently narrow in positi
space in order to be subject to a locally quadratic poten
energy function@see the approximation in Eq.~4.34!#. Simi-
larly, the GPP widths have to be small compared with
spatial extension of the kinetic couplingC(T). An algorithm
for optimal decomposition of an initial density with a pre
specified global error is described in Ref. 72.

Another issue is the initial representation of the coh
ences. Even when the initial coherences vanishes, i.e., if
system is initially prepared in a single adiabatic state,
need a set of GPPs with zero amplitudes to model the co
ences. In the course of the propagation, their real part
acquire an amplitude due to the operation ofL2 @see Eq.
~4.16!#, which shall be rotated in the complex number pla
by virtue ofL1 and transported by the action ofL3 ~see also
Fig. 1!. The use of grid methods as suggested in Ref.
clearly becomes prohibitive for multidimensional system
Instead, we proceed as follows to generate the initial po
tions of the GPPs modeling the coherences: First,
trajectory-based surface hopping simulation is carried out
each instance of time we are collecting those trajecto
where coherence information is essential, i.e., where the h
ping probability is large, and collect the respective tripl
(Rh ,Ph ,th). Should this set become exceedingly large,
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introduce a Monte Carlo sampling from this set in order
obtain a smaller one. In a second step, each of these poin
phase space is propagated back fromth to initial time t0 .
This supplies us with initial values for the cente
Ri j (t0),Pi j (t0). The corresponding width parameters a
chosen such that a dense sampling of the coherences in p
space is guaranteed. Once we have completed the initial
ditions, a forward simulation is performed, treating densit
and coherences on the same footing, i.e., as a set of GPP
described in the three previous paragraphs. Again it is no
that the propagation of the densities and coherences migh
performed adaptively through the techniques suggeste
Ref. 74, i.e., GPPs can be generated or deleted as need

V. AVOIDED CROSSING EXAMPLES

A. Single crossing

In order to demonstrate the difference in the quality
approximation of a time evolving density matrix by the d
ferent surface hopping methods, we choose a single cros
characterized by the diabatic potential energy matrix,50

V11~R!5AR2, V22~R!5B/R, V12~R!5C, ~5.1!

with A5B51 and C50.1. The corresponding adiabat
potential-energy curvesE1(R),E2(R), exhibiting an avoided
crossing, effective potentialE12(R), and first-order nonadia
batic couplingC12, are shown in Fig. 2. Initially, the system
is assumed to be in a pure state, in this case the upper
batic state. It is characterized by a Gaussian wave pack
the heavy-particle degree of freedom,

x1~R,t50!}expS iP0R2
1

a2 ~R2R0!2D , ~5.2!

with R050.4 which is located in the strongly repulsive r
gime of the upper adiabatic state, with initial momentu
P05100 and with a width parameter ofa50.1. The small-
ness parametere5Am/M50.01 was chosen to resemble th
mass ratio of electrons and nuclei typically encountered
molecular dynamics.

FIG. 2. Single-crossing example: adiabatic potential energy curves,E1(R)
and E2(R), governing the transport of densities~solid line!, mean-
arithmetical surface,E12(R), for the transport of coherence~dotted line!,
and nonadiabatic couplingC12(R)/4 ~dashed line!.
in

ase
n-
s
, as
d
be
in
d.

f

ing

ia-
in

n

First of all, the numerically exact quantum evolution
generated as a reference for the quantum-classical prop
tion schemes. It is obtained in the Schro¨dinger picture using
a grid representation in position space allowing for the e
cient use of fast Fourier transforms~FFTs! for the evaluation
of the kinetic energy operator.76 The time discretization is
accomplished by a second-order Strang splitting of the
netic and potential parts of the Hamiltonian.67–69The result-
ing population dynamics can be seen in Fig. 3. Upon pass
the region of the avoided crossing, the population of
upper state,w2(t)5*dRux2(R,t)u2, decreases to 64%. Not
the weak Stueckelberg oscillations that occur while the w
packet is still in the region of the crossing.

For the quantum-classical propagations the initial wa
packet has to be transformed into phase space. The c
sponding Wigner transform yields

X11~R,P,t50!}expS 2
a2

2
~P2P0!22

2

a2 ~R2R0!2D .

~5.3!

For the trajectory-based SHT method described in Sec. IV
phase-space points are sampled from this distribution.
the novel GPP-based SHG method described in Sec. IV
this distribution is decomposed into a number of narr
GPPs as described in Ref. 72 in more detail. Note that
decomposition works also for the more general case
Wigner distributions which are not positive everywhere. W
compare the population of the upper state,w2(t)
5*dR*dPx22(R,P,t), obtained for 100 trajectories an
GPPs, respectively, in Fig. 3. Using the same sequenc
pseudorandom numbers for the stochastic treatment of
hopping process~4.24! and ~4.25!, the SHG method yields
much better agreement with the fully quantal results than
SHT method. In principle, the results for the latter can
converged towards the numerically exact quantu
mechanical result by increasing the number of particles t
few thousand. This is because the packet passes the cro

FIG. 3. Single-crossing example: population of upper adiabatic state ve
time: numerically exact, fully quantum-mechanical simulation~‘‘QM’’ !, sur-
face hopping trajectories~‘‘SHT’’ !, and surface hopping Gaussian phas
space packets~‘‘SHG’’ !. Note that for both the SHT- and SHG-based sim
lations 100 particles have been used.
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region so fast that the transport of the coherence does
play an important role. Nevertheless, this result demonstr
the effect of better sampling of the densities in phase sp
by finite-width GPPs.

A similar picture emerges for the conservation of ene
~see Fig. 4!. The fully quantum-mechanical result obtaine
using the FFT-based split-operator scheme is numerically
act with the quantum-mechanical expectation value^H& for
the ~adiabatic! Hamiltonian of Eq.~2.16! being practically
constant. For comparison, we also calculated the expecta
value of the diagonal partH8(R)5E(R)2e2DR/2 only, i.e.,
neglecting the kinetic couplingC(R),T(R) in Eq. ~2.16!.
The energŷ H8& oscillates significantly as the wave pack
passes the region of the avoided crossing. Note that th
oscillations are in phase with the Stueckelberg oscillation
the population dynamics displayed in Fig. 3. A straightfo
ward implementation of the SHT scheme without moment
adjustment shows that the course of^H8& can be qualita-
tively reproduced by the quantum-classical expectation va
^H8&W as defined in Eq.~3.12! where HW8 (R,P)5E(R)
1P2/2 is the diagonal part of Eq.~3.6!. Note that the total
energy^H&W is not available for the traditional SHT metho
of Ref. 22. This behavior clearly indicates that the SHT
gorithm without momentum adjustment~4.26! correctly re-
produces the quantum result for the single-crossing exam
On the contrary, applying the momentum adjustment wo
even deteriorate the result by enforcing an unphysical ‘‘
ergy conservation’’ for̂ H8&W instead of̂ H&W . The result of
the SHG-based simulation is also displayed in Fig. 4. Ap
from statistical fluctuations the total energy^H&W remains
constant. Again, the results can be converged employing
increasing number of GPPs.

B. Dual crossing

The second model problem to be considered here c
sists of a pair of states exhibiting two avoided crossings. T
case is much more demanding for any classically ba
theory due to the importance of possible interference effe

FIG. 4. Single-crossing example: expectation value of energy: numeric
exact, fully quantum-mechanical simulation~‘‘QM’’ !, surface hopping tra-
jectories ~‘‘SHT’’ !, and surface hopping Gaussian phase-space pac
~‘‘SHG’’ !. H stands for the total Hamiltonian:H8 stands for the diagona
part ~neglecting kinetic coupling!.
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at the second crossing. Hence, a correct propagation of
densities and/or coherence in the region between the
crossings is of great importance. The diabatic interactions
our test model are

V11~R!5AR2, V22~R!5B, V12~R!5C, ~5.4!

with the parameters chosenA5B51 andC50.1 ~see Fig.
5!. Note that for this example the gradient of the mea
arithmetic potential-energy surfaceE12(R)5@E1(R)
1E2(R)#/2 governing the transport of the coherence is s
nificantly different from each of the adiabatic gradients f
propagation of the densities. Initially, the system is assum
to be in the lower adiabatic state with a Gaussian-sha
wave function~5.2! or density~5.3! centered atR0524.0
with initial momentum P0520, width a050.2991, and

ly

ts
FIG. 5. Dual-crossing example: adiabatic potential energy curves,E1(R)
and E2(R), governing the transport of densities~solid line!, mean-
arithmetical surface,E12(R), for the transport of coherence~dotted line!,
and nonadiabatic couplingC12(R)/6 ~dashed line!.

FIG. 6. Dual-crossing example: population of lower adiabatic state ve
time for initial momentumP0520: numerically exact, fully quantum-
mechanical simulation~‘‘QM’’ !, surface hopping trajectories~‘‘SHT’’ !, and
surface hopping Gaussian phase-space packets~‘‘SHG’’ !. Note that for both
the SHT- and SHG-based simulations 500 particles have been used.
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smallness parametere5Am/M5A1/2000. We used 500 tra
jectories or 500 GPPs to represent the densities and the
number to represent the coherence.

Our results are displayed in Fig. 6. The numerically e
act quantum propagation displays the following behav
Upon passing the first crossing atR521, about 10% of the
population is transferred to the upper adiabatic state. Su
quently, the two parts of the wave packet arrive at the sec
crossing where the interference is such that the populatio
roughly unchanged: i.e., constructive and destructive effe
are balancing each other. The population dynamics is re
duced correctly by the trajectory-based SHT procedure o
for the time span of the passing of the first crossingt
<6). At later times the overcoherent nature of this algorith
leads to a largely overestimated population transfer at
second crossing. This failure is remedied by the Gauss
based SHG algorithm, yielding very good agreement w
the fully quantum-mechanical simulation. This is a dire
consequence of the correct modeling of the individual tra
port of densities and coherence. The failure of the trajecto
based method does not occur for the dual crossing exam
of Ref. 22 also investigated in Refs. 24, 54, and 59 where
potentials are constructed such that the adiabatic poten
energy surfacesE1(R) and E2(R) as well asE12(R) are
approximately parallel. Note that the failure of the SHT a
proximation is also observed for different initial condition
The dependence of the final time population of the low
adiabatic state on the initial momentum of the wave pac
P0 , is displayed in Fig. 7. Incidental agreement of SHT
sults with the quantum-mechanical results occurs only
specific values ofP0 while the SHG simulation correctly
reproduces full quantum dynamics over the whole range
P0 .

VI. CONCLUSIONS

In the present work, a mixed quantum-classical mo
for the dynamics of large molecular systems has b

FIG. 7. Dual-crossing example: population of lower adiabatic state ve
initial momentum of the wave packet for the final timet512: numerically
exact, fully quantum-mechanical simulation~‘‘QM’’ !, surface hopping tra-
jectories ~‘‘SHT’’ !, and surface hopping Gaussian phase-space pac
~‘‘SHG’’ !.
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worked out allowing for a quantum treatment of the mo
important degrees of freedom. More specifically, t
quantum-classical Liouville equation has been derived a
first-order approximation to the partial Wigner transform
the quantum Liouville equation in the smallness parame
e5Am/M characterizing the deviation from adiabatic beha
ior. Algorithms for the numerical treatment of the QCLE ca
be derived from a Trotter splitting of the time evolution s
peroperator and a stochastically based representation of
sities and coherences. In particular it has been shown
the surface hopping trajectory procedure22 can be derived
from the QCLE essentially relying on two additional a
sumptions: namely, the momentum jump approximation a
the transport of coherence along with the densities. The li
tations of this approach can be overcome in the SHG
proach using sets of surface hopping Gaussian phase-s
packets to represent densities and coherences in phase s
The possibility to evaluate the action of nonlocal operators
phase space, too, allows us to perform simulations bey
the momentum jump approximation. The additional nume
cal effort for adjusting the amplitudes of the GPPs at ev
time step has to be compared with the main advantage
the multiple-threading algorithms which are limited by th
steep rise of the number of particles with propagation time55

In contrast, the scheme proposed here requires only a mo
number of GPPs because of the better sampling of ph
space by a finite-width particle method.71 These consider-
ations make the novel algorithm especially promising in ‘‘
the fly’’ combination of molecular dynamics withab initio
calculations of the electronic structure where each trajec
is numerically very expensive.

Another field where the Gaussian-based SHG algorit
is potentially very useful is the dynamics of molecules int
acting with ~pulsed! light. Previous attempts at applying th
trajectory-based SHT approach to such situations have b
hampered by difficulties with the treatment of the coheren
limiting the use of this method to the regime of lon
wavelengths.77,78In recent work this problem is overcome b
a stochastic implementation using particle hopping betw
different Floquet states of the ‘‘dressed molecule.’’79
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