195 research outputs found

    Rho-kinase-dependent F-actin rearrangement is involved in the inhibition of PI3-kinase/Akt during ischemia–reperfusion-induced endothelial cell apoptosis

    Get PDF
    Activation of cytoskeleton regulator Rho-kinase during ischemia–reperfusion (I/R) plays a major role in I/R injury and apoptosis. Since Rho-kinase is a negative regulator of the pro-survival phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, we hypothesized that inhibition of Rho-kinase can prevent I/R-induced endothelial cell apoptosis by maintaining PI3-kinase/Akt activity and that protective effects of Rho-kinase inhibition are facilitated by prevention of F-actin rearrangement. Human umbilical vein endothelial cells were subjected to 1 h of simulated ischemia and 1 or 24 h of simulated reperfusion after treatment with Rho-kinase inhibitor Y-27632, PI3-kinase inhibitor wortmannin, F-actin depolymerizers cytochalasinD and latrunculinA and F-actin stabilizer jasplakinolide. Intracellular ATP levels decreased following I/R. Y-27632 treatment reduced I/R-induced apoptosis by 31% (P < 0.01) and maintained Akt activity. Both effects were blocked by co-treatment with wortmannin. Y-27632 treatment prevented the formation of F-actin bundles during I/R. Similar results were observed with cytochalasinD treatment. In contrast, latrunculinA and jasplakinolide treatment did not prevent the formation of F-actin bundles during I/R and had no effect on I/R-induced apoptosis. Apoptosis and Akt activity were inversely correlated (R2 = 0.68, P < 0.05). In conclusion, prevention of F-actin rearrangement by Rho-kinase inhibition or by cytochalasinD treatment attenuated I/R-induced endothelial cell apoptosis by maintaining PI3-kinase and Akt activity

    The sponge microbiome within the greater coral reef microbial metacommunity

    Get PDF
    Much recent marine microbial research has focused on sponges, but very little is known about how the sponge microbiome fits in the greater coral reef microbial metacommunity. Here, we present an extensive survey of the prokaryote communities of a wide range of biotopes from Indo-Pacific coral reef environments. We find a large variation in operational taxonomic unit (OTU) richness, with algae, chitons, stony corals and sea cucumbers housing the most diverse prokaryote communities. These biotopes share a higher percentage and number of OTUs with sediment and are particularly enriched in members of the phylum Planctomycetes. Despite having lower OTU richness, sponges share the greatest percentage (>90%) of OTUs with >100 sequences with the environment (sediment and/or seawater) although there is considerable variation among sponge species. Our results, furthermore, highlight that prokaryote microorganisms are shared among multiple coral reef biotopes, and that, although compositionally distinct, the sponge prokaryote community does not appear to be as sponge-specific as previously thought.publishe

    Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges

    Get PDF
    Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world's oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations

    Patterns of Chemical Diversity in the Mediterranean Sponge Spongia lamella

    Get PDF
    The intra-specific diversity in secondary metabolites can provide crucial information for understanding species ecology and evolution but has received limited attention in marine chemical ecology. The complex nature of diversity is partially responsible for the lack of studies, which often target a narrow number of major compounds. Here, we investigated the intra-specific chemical diversity of the Mediterranean sponge Spongia lamella. The chemical profiles of seven populations spreading over 1200 km in the Western Mediterranean were obtained by a straightforward SPE-HPLC-DAD-ELSD process whereas the identity of compounds was assessed by comparison between HPLC-MS spectra and literature data. Chemical diversity calculated by richness and Shannon indexes differed significantly between sponge populations but not at a larger regional scale. We used factor analysis, analysis of variance, and regression analysis to examine the chemical variability of this sponge at local and regional scales, to establish general patterns of variation in chemical diversity. The abundance of some metabolites varied significantly between sponge populations. Despite these significant differences between populations, we found a clear pattern of increasing chemical dissimilarity with increasing geographic distance. Additional large spatial scale studies on the chemical diversity of marine organisms will validate the universality or exclusivity of this pattern

    Antiviral Lead Compounds from Marine Sponges

    Get PDF
    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed

    Pyrosequencing of Bacterial Symbionts within Axinella corrugata Sponges: Diversity and Seasonal Variability

    Get PDF
    Background: Marine sponge species are of significant interest to many scientific fields including marine ecology, conservation biology, genetics, host-microbe symbiosis and pharmacology. One of the most intriguing aspects of the sponge ‘‘holobiont’’ system is the unique physiology, interaction with microbes from the marine environment and the development of a complex commensal microbial community. However, intraspecific variability and temporal stability of sponge-associated bacterial symbionts remain relatively unknown. Methodology/Principal Findings: We have characterized the bacterial symbiont community biodiversity of seven different individuals of the Caribbean reef sponge Axinella corrugata, from two different Florida reef locations during variable seasons using multiplex 454 pyrosequencing of 16 S rRNA amplicons. Over 265,512 high-quality 16 S rRNA sequences were generated and analyzed. Utilizing versatile bioinformatics methods and analytical software such as the QIIME and CloVR packages, we have identified 9,444 distinct bacterial operational taxonomic units (OTUs). Approximately 65,550 rRNA sequences (24%) could not be matched to bacteria at the class level, and may therefore represent novel taxa. Differentially abundant classes between seasonal Axinella communities included Gammaproteobacteria, Flavobacteria, Alphaproteobacteria, Cyanobacteria, Acidobacter and Nitrospira. Comparisons with a proximal outgroup sponge species (Amphimedon compressa), and the growing sponge symbiont literature, indicate that this study has identified approximately 330 A. corrugata-specific symbiotic OTUs, many of which are related to the sulfur-oxidizing Ectothiorhodospiraceae. This family appeared exclusively within A. corrugata, comprising \u3e34.5% of all sequenced amplicons. Other A. corrugata symbionts such as Deltaproteobacteria, Bdellovibrio, and Thiocystis among many others are described. Conclusions/Significance: Slight shifts in several bacterial taxa were observed between communities sampled during spring and fall seasons. New 16 S rDNA sequences and concomitant identifications greatly expand the microbial community profile for this model reef sponge, and will likely be useful as a baseline for any future comparisons regarding sponge microbial community dynamics

    Biochemical Trade-Offs: Evidence for Ecologically Linked Secondary Metabolism of the Sponge Oscarella balibaloi

    Get PDF
    Secondary metabolite production is assumed to be costly and therefore the resource allocation to their production should be optimized with respect to primary biological functions such as growth or reproduction. Sponges are known to produce a great diversity of secondary metabolites with powerful biological activities that may explain their domination in some hard substrate communities both in terms of diversity and biomass. Oscarella balibaloi (Homoscleromorpha) is a recently described, highly dynamic species, which often overgrows other sessile marine invertebrates. Bioactivity measurements (standardized Microtox assay) and metabolic fingerprints were used as indicators of the baseline variations of the O. balibaloi secondary metabolism, and related to the sponge reproductive effort over two years. The bioactivity showed a significant seasonal variation with the lowest values at the end of spring and in early summer followed by the highest bioactivity in the late summer and autumn. An effect of the seawater temperature was detected, with a significantly higher bioactivity in warm conditions. There was also a tendency of a higher bioactivity when O. balibaloi was found overgrowing other sponge species. Metabolic fingerprints revealed the existence of three principal metabolic phenotypes: phenotype 1 exhibited by a majority of low bioactive, female individuals, whereas phenotypes 2 and 3 correspond to a majority of highly bioactive, non-reproductive individuals. The bioactivity was negatively correlated to the reproductive effort, minimal bioactivities coinciding with the period of embryogenesis and larval development. Our results fit the Optimal Defense Theory with an investment in the reproduction mainly shaping the secondary metabolism variability, and a less pronounced influence of other biotic (species interaction) and abiotic (temperature) factors

    The Biology and Economics of Coral Growth

    Get PDF
    To protect natural coral reefs, it is of utmost importance to understand how the growth of the main reef-building organisms—the zooxanthellate scleractinian corals—is controlled. Understanding coral growth is also relevant for coral aquaculture, which is a rapidly developing business. This review paper provides a comprehensive overview of factors that can influence the growth of zooxanthellate scleractinian corals, with particular emphasis on interactions between these factors. Furthermore, the kinetic principles underlying coral growth are discussed. The reviewed information is put into an economic perspective by making an estimation of the costs of coral aquaculture

    Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity

    Get PDF
    corecore