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Abstract Endothelial dysfunction comprises a number of
functional alterations in the vascular endothelium that are
associated with diabetes and cardiovascular disease, including
changes in vasoregulation, enhanced generation of reactive
oxygen intermediates, inflammatory activation, and altered
barrier function. Hyperglycemia is a characteristic feature of
type 1 and type 2 diabetes and plays a pivotal role in diabetes-
associated microvascular complications. Although hyperglyce-
mia also contributes to the occurrence and progression of
macrovascular disease (the major cause of death in type 2
diabetes), other factors such as dyslipidemia, hyperinsulinemia,
and adipose-tissue-derived factors play a more dominant role.
A mutual interaction between these factors and endothelial
dysfunction occurs during the progression of the disease. We
pay special attention to the possible involvement of endoplas-
mic reticulum stress (ER stress) and the role of obesity and
adipose-derived adipokines as contributors to endothelial
dysfunction in type 2 diabetes. The close interaction of
adipocytes of perivascular adipose tissue with arteries and
arterioles facilitates the exposure of their endothelial cells to
adipokines, particularly if inflammation activates the adipose

tissue, and thus affects vasoregulation and capillary recruitment
in skeletal muscle. Hence, an initial dysfunction of endothelial
cells underlies metabolic and vascular alterations that contribute
to the development of type 2 diabetes.
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Introduction

Diabetes mellitus is a common metabolic disease with a
high and growing prevalence affecting 4% of the popula-
tion and, worldwide, 171 million people in 2000 and an
expected 366 million in 2030 (Wild et al. 2004). Type 1
diabetes is characterized by an absolute deficiency of
insulin attributable to pancreatic insuffiency. In contrast,
type 2 diabetes is characterized mainly by insulin resis-
tance, viz., a reduced response of glucose uptake rate
during insulin exposure, and therefore represents a relative
deficiency of insulin in spite of high plasma levels of
insulin. Because of the progressive dysfunction of the
pancreatic β-cells, this eventually can also lead, in type 2
diabetes, to an absolute deficiency of insulin for tissue cells.
Endothelial dysfunction comprises a number of functional
alterations in the vascular endothelium, such as impaired
vasodilation, angiogenesis and barrier function, inflamma-
tory activation, and increased plasma levels of endothelial
products, all of which are generally associated with
cardiovascular disease. Endothelial dysfunction in type 1
diabetes is probably the consequence of the metabolic
changes related to diabetes, in particular hyperglycemia. With
age, a number of microvascular complications develop in type
1 diabetes patients, in particular retinopathy, nephropathy, and
the diabetic foot. In contrast, the relationship between
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endothelial dysfunction and diabetes is muchmore complex in
type 2 diabetes and saddles patients with a heavy burden,
particularly with respect to cardiovascular disease. In type 2
diabetes, a common cause may underlie both endothelial
dysfunction and the development of hyperglycemia, whereas
other factors such as dyslipidemia additionally contribute to
both. Endothelial dysfunction may thus play a primary role in
the development of the vascular complications of type 2
diabetes, complications that are aggravated by hyperglycemia,
but that are not primarily dependent on the development of
hyperglycemia.

In the present survey, we discuss the nature of
endothelial dysfunction in type 1 and 2 diabetes and the
way that it relates to these condittions. After discussing the
effects of hyperglycemia on endothelial functioning, we will
turn to the way that, in type 2 diabetes, obesity and fat-derived
adipokines act locally on arteries and arterioles and can
contribute to insulin resistance and reduced glucose uptake in
muscle. Further insights into the interrelationship between
endothelial/vascular (dys)functioning, type 1 and 2 diabetes,
and obesity may help to further improve the treatment of these
epidemically increasing metabolic disorders.

Normal endothelial functions

The endothelium of all blood vessels represents a diffuse
organ of over 700 g in the adult man (Wolinsky 1980).
Although local differences exist in the endothelium of
various types of conduit vessels, resistance vessels, and
tissue capillaries, a number of general functions are known
that are crucial for the proper functioning of the organism
(Aird 2007b; Pober and Sessa 2007; Aird 2007a). In
addition, the endothelium of many different organs has
specialized functions (Aird 2007b). The endothelium can
extend its repertoire of functions by adaptation to various
stimuli, including mechanical stress, oxidative and metabolic
stresses, inflammation, hypoxia, and many other stresses
(Cines et al. 1998; Pober and Sessa 2007).

General functions

By the nature of its location, the endothelium acts as a
blood container, but in addition, it actively regulates the
passage of nutrients, hormones, and macromolecules into
the surrounding tissue (Cersosimo and DeFronzo 2006). It
is covered by a glycocalyx that contributes to the selectivity
of its barrier function (van Haaren et al. 2003). Further-
more, the endothelium ensures the fluidity of blood by its
contribution to hemostasis. Indeed, living endothelial cells
are needed to prevent and limit blood coagulation and the
formation of a platelet thrombus and to produce fibrinolysis
regulators (van Hinsbergh 2001).

The interaction between flowing blood and endothelium
not only involves the interaction of blood constituents and
cells with the endothelium, but also includes the sensing of
mechanical forces, in particular shear forces that are exerted
by the flowing blood on the endothelium. This sensing
enables the endothelial cell to respond by acute vaso-
regulation and by inducing chronic adaptation of the blood
vessel. Acute vasoregulation is achieved by the production of
vasodilator factors, such as nitric oxide (NO), endothelium-
derived hyperpolarization factor (EDHF), and prostaglandins
(PGI2/PGE2), of which the relative contribution varies
between the different types of vessels (Shimokawa et al.
1996). The endothelium not only responds to vasoactive
agents with usually vasodilation, but is also involved in the
catabolism, metabolism, and synthesis of various vasoactive
agents, particular in the lung (Shaul 1999).

Furthermore, in specific conditions, the endothelium is
also able to induce the potent vasoconstrictor endothelin-1
(ET-1). Insulin also acts as a regulator of vasoregulation, as
it is able to induce NO and ET-1 release (Schroeder et al.
1999; Cardillo et al. 1999; Ferri et al. 1995). Another
important function of the endothelium lies in the regulation
of a proper recruitment of leukocytes at sites of inflamma-
tion or an immune reaction. Again, both acute responses
and chronic adaptation can cause induction of leukocyte
adhesion molecules and other gene products. Inflammatory
activation of the endothelium can occur, for example, after
exposure to bacterial lipopolysaccaride and inflammatory
cytokines, of which the potent inducers interleukin-1 (IL-1)
and tumor necrosis factor-alpha (TNFα) have drawn the
most attention. Inflammatory activation can also be induced
by reactive oxygen intermediates (ROIs), which can be
generated by the inflammation process itself and by
disturbed metabolic conditions (Gimbrone 1999).

Finally, the endothelium is the major vector in angio-
genesis, the formation of new microvessels. This is not only
important in development, growth, and tissue repair, but
also in capillary perfusion of muscle. Furthermore, in a
number of diseases, an improper angiogenesis response
causes unwanted growth, risk for local haemorrhage by
immature vessels, or insufficient blood supply (Carmeliet
2005).

Endothelial function in glucose metabolism and insulin
action

Endothelial cells are metabolically extremely active cells
with a high rate of protein synthesis. They can use both
glucose and fatty acids as nutrients. Non-esterified fatty
acids (NEFA) are liberated from triglyceride-rich lipopro-
teins by lipoprotein lipase that is bound to the endothelial
glycocalyx or are taken up from the plasma. In endothelial
cells, the uptake of D-glucose occurs via the Glut-1 glucose
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transporter, which is not influenced by insulin, in contrast
to Glut-4 in muscle cells. Therefore, glucose uptake in the
endothelial cells reflects the glucose level in the blood
independently of insulin sensitivity. However, most of the
glucose that reaches the endothelium should not be
catabolized, but delivered to the underlying tissue cells.

As the endothelium forms a continuous sealing of the
blood, it acts as the gateway for glucose and insulin
delivery for tissue cells. Small molecules, such as glucose,
can pass through the interendothelial junctions, except for
those in the endothelium of brain microvessels, which only
allow transcellular receptor GLUT-1-mediated translocation
(Pardridge et al. 1990). In principle, Glut-1 may also
contribute to the exchange of D-glucose from the blood to
the interstitium of other tissues, but its relative contribution
has not been systematically investigated and is probably
small. This contrasts with the exchange of proteins, such as
albumin, which pass endothelial cells transcellularly via the
shuttling of caveolar vesicles between the luminal to the
abluminal side. These caveolae contain specific receptors
facilitating translocation (Simionescu et al. 2002; Schnitzer
et al. 1994). The junctions widen and allow paracellular
exchange of proteins only under conditions of enhanced
demand, e.g., during inflammation, in caveolin-1-deficient
animals, which have no functional caveolae, or under
hypoxia. Insulin is a small protein (6,000 Da), but
nevertheless ample evidence is available that insulin-
receptor-mediated binding and exchange determines its
exchange from plasma and interstitial fluid (Bottaro et al.
1989; Wiernsperger 1994) and thus its availability to

insulin-sensitive tissues, such as muscle, adipose tissue
and brain (Fig. 1). Only the liver escapes this control, as it
has fenestrated endothelial cells. As a consequence, the
endothelium may affect the relative exposure of insulin-
sensitive tissue cells to insulin after a glucose challenge
(Yang et al. 1994; Sjostrand et al. 2002). The delivery of
glucose and insulin to a specific tissue depends on the size
of the perfused capillary bed (capillary recruitment) and
their passage rates over the endothelium. The perfused
capillary bed is determined by the pre-existing capillaries
and in particular by the vasoregulation of the proximal
resistance vessels. Insulin affects this regulation and, thus,
glucose and insulin delivery.

Insulin can dilate arteries and arterioles by a receptor-
dependent stimulation of a pathway that involves IRS-1,
PI3 kinase, Akt/PKB and endothelial NO synthase (eNOS)
and leads to the generation of the potent vasodilator NO
(Fig. 1). In addition, insulin is also able to cause rapid
release of ET-1, which occurs via a pathway that involves
activation of MEK, ERK1/2, and endothelin-converting
enzyme. Both effects occur via activation of the insulin
receptor, which subsequently phosphorylates insulin recep-
tor substrates (IRS); IRS-1 and IRS-2 have been demon-
strated in endothelial cells (Kubota et al. 2003; Montagnani
et al. 2002). Deficiency of IRS-1 impairs NO induction by
insulin (Montagnani et al. 2002). However, the roles of
IRS-1 and IRS-2 in endothelial cells and the balance of
their expressions in various metabolic conditions are not
completely understood. By analogy with (diabetic) heart
cells (Laviola et al. 2001), the interaction of the activated

Fig. 1 Delivery of insulin and D-glucose and acute insulin signaling
in endothelial cells. Uptake of D-glucose occurs via the glucose
transporter Glut-1, which, in contrast to Glut-4 in muscle, is not
affected by insulin signaling. Exchange of glucose from the plasma to
the interstitial fluid proceeds mainly via intercellular gaps/junctions. In
contrast, insulin is shuttled over the endothelium via caveolae after
binding to its receptor. In addition, insulin receptor signaling affects
vasoregulation by endothelial cells. It has a rapid effect on the release
of endothelin-1 and nitric oxide (NO). Activation of the insulin
receptor phosphorylates insulin receptor substrates (IRS), of which

IRS-1 and IRS-2 occur in endothelial cells. PI3 kinase complexes with
the phosphorylated IRS-1, after which PKB/Akt and subsequently
endothelial NO synthase (eNOS) are activated by phosphorylations.
The eNOS dimer generates NO. Activation of the insulin receptor also
causes activation of MEK-1 and ERK1/2 and subsequently the
activation and release of endothelin-1. By analogy with heart cells
(Laviola et al. 2001), the interaction of the activated IRS-2 with the
adapter protein Shc might cause phosphorylation of MEK and the
subsequent activation steps
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IRS-2 with the adapter protein Shc has been suggested to
cause phosphorylation of MEK and the subsequent activa-
tion steps. In addition to acute regulation, gene expression
is affected. Mice with a vascular endothelial cell-specific
insulin receptor deficiency show normal growth and
glucose metabolism but display a reduction in ET-1 and
eNOS mRNAs (Vicent et al. 2003).

Endothelial dysfunction and diabetes

Endothelial dysfunction

The functioning of the endothelium is flexible and adapts to
various types of metabolic, mechanical, and inflammatory
stress (Cines et al. 1998; Pober and Sessa 2007). However,
when this functioning becomes inadequate, e.g., loss of NO
generation, or exaggerated, e.g., improper inflammatory
activation, one speaks of endothelial dysfunction. From a
mechanistic point of view, as many endothelial dysfunctions
exist as endothelial functions. They include changes in
barrier function and hemostasis, reduced vasodilator
responses, improper inflammatory activation, and angiogenesis
(Table 1).

In the clinical context, endothelial dysfunction is
regarded as an important and early factor in the pathogen-
esis of atherothrombosis (Gimbrone 1999; Ross 1999) and
vascular complications of diabetes (Stehouwer et al. 1997)
and is associated with a number of traditional risk factors
including hypercholesterolemia, smoking, hypertension,
diabetes mellitus, and insulin resistance and, more recently,
obesity (Brook et al. 2001). In this context, it is often
thought to represent a collection of simultaneously occur-
ring alterations in endothelial functioning that take place
early in arterial disease and that are causal to subsequent
changes in the structure and function of the affected blood

vessels. However, although an accumulation of ROIs, loss
of NO bioavailability, and inflammatory activation of the
endothelium play a role in most clinical conditions
including diabetes (see below), the exact nature and degree
of endothelial dysfunction can vary with the nature of the
noxious stimulus and the type of vessel involved.

Endothelial dysfunction and vascular complications
of diabetes

Endothelial dysfunctions that are associated with the
occurrence and severity of vascular complications in
diabetes are summarized in Table 1. Some of them are
mainly associated with hyperglycemia and microangiop-
athy, whereas others are induced by more complex
metabolic alterations in type 2 diabetes and particularly
contribute to macroangiopathy. After a consideration of
various aspects of endothelial dysfunction in diabetes in
general, we shall discuss, in the subsequent chapters, the
way that hyperglycemia and factors associated with insulin
resistance and obesity contribute to these aspects of type 1
and 2 diabetes.

Structural changes in endothelial extracellular matrix
and barrier dysfunction

The endothelial cell is polarized and has, as extracellular
matrix, a glycocalyx at its luminal side and a basement
membrane at its abluminal side. In diabetes, the basement
membrane is thickened and altered in composition, because
of the enhanced synthesis of matrix proteins by trans-
forming growth factor beta (TGF-β) activity and possibly
by inadequate counter regulation of matrix protein synthesis
by the defective matrix itself (Chen et al. 2001; Wolf et al.
2005). Chondroitin sulfate proteoglycans and dermatan
sulfate proteoglycans are increased at the expense of

Table 1 Endothelial dysfunc-
tions associated with the
occurrence and severity of
vascular complications in
diabetes

Type of endothelial dysfunction

Structural changes in endothelial barrier and matrix
Increased basal membrane thickness
Reduced glycocalyx
Formation of advanced glycation end products and improper matrix crosslinking
Microalbuminuria
Reduced vasodilator response (hypertension)
Reduced nitric oxide production
Increased endothelin-1 synthesis
Increased inflammatory activation
Increased expression of cell adhesion molecules and leukocyte adhesion
Increased production of and response to circulating mediators, including C-reactive protein
Altered hemostasis
Elevated plasma levels of von Willebrand factor
Reduced TM, increased plasminogen activator inhibitor-1
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heparan sulfate proteoglycans, which are markedly reduced
in diabetes (Heickendorff et al. 1994). At the same time, the
thickness of the glycocalyx, which contains large amounts
of heparan sulfate proteoglycans, is markedly reduced
(Nieuwdorp et al. 2006a, 2006b). Loss of the glycocalyx
leads to a wide spectrum of vascular abnormalities, which
include the adhesion of mononuclear cells and platelets to
the endothelial surface, attenuated NO availability, and is
thought to cause a moderately increased leakage of macro-
molecules through the endothelium of many vessels in
hyperglycemia and diabetes (Berg et al. 2006). This
phenomenon might be the basis of the Steno Hypothesis
(Deckert et al. 1989), which proposes that microalbuminuria
(see below) in diabetes reflects a systemic leakage of
albumin and atherogenic lipoproteins over the endothelium,
thus reflecting an enhanced risk for atherothrombosis and
cardiovascular disease. Although this hypothesis may
explain the more general localization of atherosclerosis in
diabetes as compared with the more focused lesions in
hypercholesterolemia (Jensen et al. 1995), several studies
have been unable to demonstrate such association between
the transcapillary leakage of albumin and microalbuminuria
(Nosadini et al. 2005). This indicates that other additional
factors determine the functioning of the endothelial barrier
toward macromolecules in microalbuminuric patients.

In vitro and animal studies have indicated hyperglycemia
as an etiological factor of endothelial barrier injury, with
microvascular hyperpermeability and plasma leakage as a
consequence (Yuan et al. 2007; Simionescu 2007). Hyper-
glycemia can stimulate crosslinking and modification of
matrix proteins by glyco-oxidation, and advanced glycation
end products (AGEs), which are generated in this process,
have been reported to alter the synthesis of matrix proteins
in animal experiments (Naka et al. 2004). The role of
hyperinsulinemia as a contributor to capillary leakage is
still controversial (Yuan et al. 2007). Several studies have
suggested that the exchange of insulin in muscle capillaries
is retarded; this could be attributable either to reduced
permeability or to reduced perfusion of the muscle capillary
bed (Castillo et al. 1994; Sjostrand et al. 2002).

Microalbuminuria

Microalbuminuria, which is defined in humans as 30–300 mg
urinary albumin excretion per 24 h (Mogensen 1984;
American Diabetes Association 2005), is generally consid-
ered as an indicator of early kidney damage and atheroscle-
rosis in diabetes (Stehouwer and Smulders 2006; Weir 2007).
Its origin is still incompletely understood. In the Steno
Hypothesis (Deckert et al. 1989), leakage of albumin into the
urine is a reflection of widespread vascular damage and thus
predicts cardiovascular disease. Indeed, epidemiological and
prospective studies have shown that microalbuminuria is

predictive for cardiovascular disease in particular in patients
with diabetes and hypertension, but also in the general
population, independently of other classical risk markers
(Weir 2007).

Stehouwer et al. (1997) have suggested that the close
linkage between microalbuminuria and endothelial dys-
function in type 1 and 2 diabetes patients might explain the
finding that microalbuminuria is a risk marker for athero-
sclerotic cardiovascular disease. The type of endothelial
dysfunction appears to be important in this aspect. In type 2
diabetes patients, these authors have found that micro-
albuminuria, endothelial dysfunction as estimated from
plasma von Willebrand factor (vWF) levels, and low-grade
inflammation, although tightly linked, are independently
associated with risk for cardiovascular death (Stehouwer et
al. 2002). In constrast, in elderly individuals without and
with diabetes, microalbuminuria is linearly associated with
impaired endothelium-dependent flow-mediated vasodila-
tion, supporting the concept that reduced endothelial NO
synthesis plays a role in the association of microalbuminuria
with cardiovascular disease risk (Stehouwer et al. 2004). Other
investigators have proposed that individual variation in
vascular function is simultaneously associated with a variable
excretion of micro amounts of albumin and susceptibility to
developing cardiovascular disease subsequently (de Zeeuw et
al. 2006).

Both changes in the hydrostatic pressure and the
permselectivity of the glomeruli are thought to contribute
to microalbuminuria. One might anticipate that changes in
the local availability of growth factors, such as vascular
endothelial growth factor (VEGF) and TGFβ, or unfavor-
able conditions, e.g., hyperglycemia, may affect the
interaction between the podocyte foot ends and the
glomerular endothelium and thus alter glomerular permse-
lectivity, together with changes in the glomerular proteo-
glycans (Wolf et al. 2005). In addition to increased
glomerular leakage of albumin, decreased protein resorp-
tion in the renal tubuli will also contribute to the
appearance of albumin in the urine (D’Amico and Bazzi
2003).

NO availability and dysfunctional vasoregulation

A key feature of endothelial dysfunction is the inability of
arteries and arterioles to dilate appropriately in response to
stimuli. This limits the delivery of nutrients and hormones
to the distal tissues. Two mechanisms play an important
role. Dominant is a decreased bioavailability of the
vasodilator NO. In addition, increased synthesis of ET-1
by activated endothelial cells induces vasoconstriction. The
bioavailability of NO is determined by a balance of NO
production by eNOS (also called NOS-III) and reduction of
active NO by quenching of NO by ROIs, particularly the
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superoxide anion (Williams et al. 2002). The NO genera-
tion occurs in a tightly coupled sequence of reactions at the
eNOS dimer, which is stabilized by BH4 and requires
several cofactors (Raman et al. 1998). Uncoupling of eNOS
causes the enzyme to produce superoxide rather than NO
(Schmidt et al. 1996; Wever et al. 1997).

Superoxide and other ROIs inhibit NO bioavailability in
several ways. First, superoxide reacts directly with NO and
forms peroxynitrite. Peroxinitrite is a potential damaging
agent and contributes by itself to eNOS uncoupling, thus
aggravating reduced NO production. Second, ROIs reduce
the availability of tetrahydrobiopterin (BH4), a cofactor
required for NO synthesis from eNOS. Loss of structural
interaction of BH4 with eNOS results in eNOS uncoupling
and the production of superoxide instead of NO by eNOS
(Raman et al. 1998; Hodnett and Hester 2007). Infusion of
BH4 partially counteracts the reduced acetylcholine-
induced vasodilation in type 2 diabetes patients, supporting
the concept that eNOS uncoupling and reduced NO
bioavailability contribute to endothelial dysfunction in
diabetes (Heitzer et al. 2000). A third mechanism by which
ROI reduce NO availability is by inhibition of the enzyme
dimethylarginine dimethylaminohydrolase (DDAH; Lin et
al. 2002). As DDAH converts the endogenous eNOS
inhibitor called asymmetric dimethylarginine (ADMA),
the inhibition of DDAH causes the accumulation of ADMA
and the suppression of NO production (Lin et al. 2002).
Elevated plasma ADMA levels are a risk marker for
cardiovascular events and diabetic kidney disease in
patients with type 1 and type 2 diabetes (Lajer et al.
2008; Krzyzanowska et al. 2007). Intensive treatement of
type 2 diabetes patients reduces, amongst others, both
ADMA levels and cardiovascular risk (Yasuda et al. 2006).

In addition to ROIs, an increase in arginase is another
mechanism leading to NO availability. Arginase metabo-
lizes L-arginine to urea and ornithine. As enhanced arginase
activity can decrease tissue and cellular arginine levels,
L-arginine availability to eNOS is reduced (Berkowitz et al.
2003), which leads to decreased NO production and
increased superoxide generation (Kaesemeyer et al.
2000). Recently, increased arginase activity in diabetes
has been reported to contribute to vascular endothelial
dysfunction by reduced L-arginine availability to NO
synthase (Romero et al. 2008). A possible mechanism
involved is the activation of RhoA by high glucose levels,
thereby increasing arginase activity, which in turn initiates a
feed-forward cycle of diminished NO levels and further
oxidative stress (Romero et al. 2008). Insulin suppresses the
expression of genes from the urea synthesis pathway,
including arginase. As insulin signaling is disturbed in
diabetes, a diabetes-induced increase in arginase activity
might explain the decreased L-arginine levels reported in
plasma from diabetic animals and patients (Pieper et al.

1997; Hagenfeldt et al. 1989) and in vascular tissue of
diabetic rats (Pieper et al. 1997).

Insulin resistance and oxidative stress, such as that
induced by hyperglycemia, can both contribute to an
increased production of the potent vasoconstrictor ET-1.
As will be discussed below, the balance between NO- and
ET-1-dependent pathways plays a major role in vaso-
regulation by insulin and the dysfunction of vasoregulation
in diabetes and obesity.

Other vasodilating factors such as endothelium-derived
hyperpolarization factor (EDHF) may also be altered in
diabetic animals (De Vriese et al. 2000). The contribution
of EDHF is most pronounced in smaller vessels, which
limits a possible role for EDHF in diabetic endothelial
dysfunction to the smaller resistance arteries and arterioles.
Within the limited number of studies available, various
effects of diabetes on EDHF production (reduction,
compensatory increase, no contribution) have been reported
depending on the type of vessel studied and experimental
setting (De Vriese et al. 2000; Fitzgerald et al. 2007).

Leukocyte adhesion and inflammation

The generation of ROIs also affects other functions of the
endothelium. Either directly via ROI or via a reduction of
NO, the nuclear factor kappa-B (NF-κB) pathway is
activated with, subsequently, the activation of numerous
genes involved in inflammation (Tesfamariam and DeFelice
2007; Cines et al. 1998; Pober and Sessa 2007). In
particular, the cell adhesion molecules VCAM, ICAM-1,
and E-selectin have drawn much attention. As they
represent major receptors controlling the influx of mono-
cytes and other inflammatory cells into the arterial wall,
their expression is considered as a hallmark in the etiology
of atherosclerosis (Gimbrone 1999). Their importance is
further underlined by the observation that the proper arterial
shear forces exerted by the flowing blood on the endothe-
lium have anti-atherogenic properties by reducing the
inflammatory activation of and expression of these leuko-
cyte adhesion molecules by the endothelium (Dekker et al.
2005; Gimbrone 1999; SenBanerjee et al. 2004). Many
studies in experimental animals have shown increased
expression of leukocyte adhesion molecules and low-grade
inflammation of the endothelium in diabetes and their
effects on the development and aggravation of atheroscle-
rotic lesions. In humans, the moderate elevation of C-
reactive protein (CRP) in atherosclerosis, insulin resistance,
and diabetes has been interpreted as being the consequence
of a systemic low-grade inflammation of the arteries (Jager
et al. 1999; Ridker 2007; Schalkwijk et al. 1999; Yudkin et
al. 1999). Furthermore, an increase of soluble forms of
VCAM-1 and ICAM-1 has been observed in diabetes
patients and is associated with an increase risk of
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developing cardiovascular disease (Jager et al. 2000;
Becker et al. 2002).

AGEs have been reported to be able to activate NF-κB
in endothelial cells via the activation of the receptor RAGE.
This has been found in studies in vitro and in experimental
animals (Naka et al. 2004; Yan et al. 1994). AGE/RAGE-
mediated activation of reduced nicotinamide-adenine-di-
nucleotide phosphate (NADPH) oxidase has also been
reported (Wautier et al. 2001). Further studies have shown
that RAGE has additional ligands with a much higher
affinity, such as S100 protein, which are also involved in
inflammation, and that other vascular cells, e.g., macro-
phages also contain RAGE (Yan et al. 2008). Hui et al.
(2001) have pointed out that radical generation by AGEs
can be caused by the ability of AGEs to bind ROI-
generating heavy metals. This may explain the considerable
variation that exists in reports of the effect of AGEs on
endothelial cells (Wautier et al. 2001; Yan et al. 2008;
Lieuw-a-Fa et al. 2006).

Hyperinsulinemia accelerates atherosclerosis by directly
enhancing neutrophil transendothelial migration through
increasing endothelial PECAM-1 expression via mitogen-
activated protein kinase activation (Okouchi et al. 2002).

Decreased thromboresistance

Several proteins involved in hemostasis have been evaluated
as potential risk indicators of cardiovascular disease in
diabetes (Alessi and Juhan-Vague 2008). An increase in
soluble thrombomodulin may point to a decreased ability to
activate the anticoagulant protein C pathway, whereas a
decrease in tissue-type plasminogen activator and an increase
of its inhibitor PAI-1 may point to reduced fibrinolysis
(Stehouwer et al. 1997, 2004). Of particular interest is vWF,
which is both involved in the adhesion of platelets to
collagen and in complexes with coagulation factor VIII.
Increases in plasma vWF concentrations have consistently
been associated with an increased risk of cardiovascular
complications and death in diabetes patients (Stehouwer et
al. 1991, 2004). The way that vWF contributes to this risk is
still uncertain.

Altered angiogenesis and tissue repair

The regeneration function of endothelial cells as repre-
sented by angiogenesis is dysfunctional in hyperglycemia
and diabetes. Diabetes patients have poor wound healing,
impaired collateral formation after vascular occlusion or
myocardial infarction, and an increased risk of rejection of
transplanted organs (Martin et al. 2003). Reduced vascu-
larization probably also contributes to diabetic neuropathy.
In contrast, an excessive neovasularization is observed in
the eyes of patients with diabetic retinopathy (Aiello 2005).

Although this may appear surprising, one has to realize that
the cause of this excessive neovascularization is improper
vascularization of the retina itself. Indeed, narrower retinal
arteriolar caliber before the onset of neovascularisation
predicts the development of diabetes, providing further
evidence that microvascular changes may contribute to the
pathogenesis of diabetes (Nguyen et al. 2008). Because of
the reduced blood supply, an additional layer of unstable
vessels grows in the vitreous fluid over the retina, thereby
increasing the risk for vascular leakage and bleeding into
the eye. In patients with proliferative diabetic retinopathy,
huge levels of VEGF have been found in the eye fluid,
indicating an important contribution of this angiogenic
factor (Aiello et al. 1994). Furthermore, the level of VEGF
is lower in diabetes patients treated with angiotensin-
converting enzyme (ACE) inhibitors suggesting that angio-
tensin 2 also contributes (Hogeboom et al. 2002). Either
diabetes itself or the hypoxia that results from endothelial
and vascular injury may induce these factors. Hyperglycemia is
a major determinant of vessel damage in diabetic retinopathy
with ROI, accumulation of glycolysis intermediates, and AGEs
as potential mediators. Reduction of the accumulation of
glycolysis intermediates and blockage of AGE formation has
been shown to be effective in an animal setting (Hammes et al.
2003; Tamarat et al. 2003). Anti-VEGF antibodies have been
demonstrated to be efficacious in counteracting neovasculari-
zation in adult macular degeneration in the eye and are being
evaluated in patients with diabetic retinopathy (Andreoli and
Miller 2007). Finally, hyperinsulinemia and overactivation of
insulin and insulin-like growth factor-1 receptors in the retinal
microcirculation have been shown, in rodents, to contribute to
VEGF expression and retinopathy associated with diabetes.

In addition to VEGF, VEGF receptors can also be
affected in diabetes. Chronic coronary heart disease in
diabetic patients is accompanied by increased VEGF
myocardial expression and a decreased expression of its
receptors together with a down-regulation of its signal
transduction. The last-mentioned might be partially respon-
sible for the reduced neoangiogenesis in diabetic patients
with ischemic cardiomyopathy (Sasso et al. 2005). Further-
more, the neurotrophin p75 receptor, which is upregulated
in the ischemic hindlimbs of diabetic mice induces
endothelial apoptosis and has angiogenic properties (Caporali
et al. 2008).

Hyperglycemia-related endothelial dysfunction in type 1
diabetes

Hyperglycemia is a feature of both type 1 and type 2
diabetes. Ample evidence exists that intensified regulation
of blood glucose markedly reduces the development and
progression of microvascular complications (United
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Kingdom Prospective Diabetes Study [UKPDS] 1995; The
Diabetes Control and Complications Trial Research Group
1993). The UKPDS and subsequent studies have shown
that the efficacy of tight glucose control is less pronounced
for macrovascular complications, particularly atherosclero-
sis and its sequels, in type 2 diabetes patients (Stratton et al.
2000), and very stringent control could even aggravate the
disease (The Action to Control Cardiovascular Risk in
Diabetes Study Group 2008; The ADVANCE Collaborative
Group 2008). This indicates that determinants other than
hyperglycemia also play a dominant role in the develop-
ment of macrovascular disease. Notwithstanding this,
hyperglycemia is still considered not only to be pivotal in
diabetes-associated microvascular complications, but also
to contribute to worsening macrovascular complications.

Endothelial activation by hyperglycemia

Major vascular defects in diabetes, in which hyperglycemia
plays an important role, include increased arterial stiffness
and reduced NO production in resistance arteries and
arterioles, reduced glomerular function and microalbumi-
nuria in the kidney, and inappropriate neovascularization in
the eye (Stehouwer et al. 1997). In nearly all of these cases,
the hyperglycemic state is thought to affect endothelial
functioning. A number of biochemical mechanisms has
been observed, which Michael Brownlee has unified in one
mechanism (Brownlee 2001, 2005). According to this
mechanism (Fig. 2), the production of reactive oxygen
radicals generated in particular by mitochondrial uncou-
pling and the subsequent activation of poly(ADP-ribose)

polymerase (PARP) and the inhibition of the glycolysis
enzyme D-glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) cause accumulation of glycolysis pathway inter-
mediates, which activate at least four biochemical pathways
known to be altered in endothelial cells by hyperglycemia:
protein kinase C (PKC) activation, generation of methyl-
glyoxal and AGEs, activation of the hexosamine pathway, and
reduction of the NADPH/NADP+ ratio by activation of the
sorbitol pathway.

The accumulation of glycolysis-derived triose-phosphates
can activate PKC by their conversion to DAG, a known
activator of PKCs. In particular, the isoforms PKC-β2 and
PKCδ have received much attention, on the one hand because
they increase the expression of genes that are enhanced in
diabetes, such as PAI-1, ET-1, VEGF, and TGF-β, and on the
other hand, because of the efficacy of PKC-β2 blockers in
reducing diabetic microangiopathy in animals (Koya and
King 1998; Noh and King 2007). However, the efficacy of
these blockers in man is still unclear.

Furthermore, the accumulated glycolysis-derived triose-
phosphates can be converted into methylglyoxal, which can
modify proteins intracellularly, forming AGEs within the
cell. Methylglyoxal modification of heat-shock protein
Hsp27 (Schalkwijk et al. 2006) and mSin3A, which
enhances angiopoietin-2 transcription (Yao et al. 2007),
have been reported in endothelial cells. An increase in
cellular methylglyoxal has also been found to arrest cell
growth, to induce apoptosis (Okado et al. 1996; Thornalley
1990), and to stimulate the endocytosis of macromolecules
(Shinohara et al. 1998). Intracellular methylglyoxal is
degraded by glyoxylase. Overexpression of glyoxylase I

Fig. 2 Role of hyperglycemia
on endothelial activation. The
production of reactive oxygen
radicals following mitochondrial
uncoupling and the subsequent
activation of poly(ADP-ribose)
polymerase (PARP) and inhibi-
tion of the glycolysis enzyme
D-glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) result
in accumulation of glycolysis
pathway intermediates. These
activate at least four biochemical
pathways known to be altered in
endothelial cells by
hyperglycemia (top right)
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in endothelial cells results in a decrease of the intracellular
hyperglycemia-induced methylglyoxal concentration ac-
companied by normalization of endocytosis (Shinohara et
al. 1998). High glucose levels also cause the formation of
extracellular AGEs. As discussed above, such AGEs may
induce inflammatory activation of endothelial cells (Yan et
al. 1994).

The ambient glucose concentration regulates the cellular
concentration of uridine 5’diphosphate N-acetylglucos-
amine (UDP-GlcNAc), which is generated from the
glycolysis intermediate fructose-6-phosphate by glutamine:
fructose-6-phosphate aminotransferase in the hexosamine
pathway (Hart et al. 2007; Sayeski and Kudlow 1996).
UDP-Glc is a precursor for proteoglycans and O-linked
GlcNAc (O-GlcNAc) addition to nuclear and cytoplasmic
proteins (Hart et al. 2007). Increased O-glycosylation of
SP-1 causes increased activity of this transcription factor
and a subsequent elevated gene transcription of PAI-1 and
TGF-β (Du et al. 2000). Furthermore, an increased flux of
glucose through the hexosamine pathway has been associ-
ated with insulin resistance associated with defects in Akt
activation in 3T3 L1 adipocytes (Vosseller et al. 2002) and
insulin resistance in skeletal muscle (Marshall et al. 1991;
Patti et al. 1999).

The sorbitol pathway is also stimulated by hyperglycemia
and can contribute to hyperglycemic complications in
animals. However, its significance for endothelial dysfunction
has been disputed as aldolase inhibitors have little effect in
man and the sorbitol pathway is poorly active in endothelial
cells (King 1996).

Brownlee’s unifying mechanism for the pathobiology of
hyperglycemia-induced diabetic complications (Brownlee
2005) thus proposes that hyperglycemia induces the
generation of superoxide, which subsequently results, via
the activation of PARP, in the inhibition of GAPDH and the
accumulation of glycolysis intermediates. Subsequent
animal studies have demonstrated that the application of
benfotiamine, which lowers the levels of glycolysis
intermediates by stimulation of the pentose phosphate
shunt, has a beneficial effect on endothelial survival and
microvascular function in the eye of rodents (Hammes et al.
2003). Additional evidence for the importance of this
mechanism has been provided by studies that interfere with
superoxide production in diabetic mice, a procedure that
corrects defective ischemia-induced neovascularization
(Ceradini et al. 2008). In the original model, the uncoupling
of mitochondria is considered to be a major source of
superoxide generation. However, it should be kept in mind
that, in addition to uncoupled mitochondria, several other
mechanisms could generate ROIs. In particular, the activa-
tion of NADPH oxidases has been reported as an important
contributor to ROI stress (Dworakowski et al. 2008;
Munzel et al. 2008), whereas the uncoupling of eNOS also

contributes to the generation of superoxide (Wever et al.
1997).

Pseudohypoxia

To explain various changes in hyperglycemia-exposed
endothelial cells, such as enhanced TGF-β expression and
collagen synthesis, Williamson et al. (1993) postulate that
pseudohypoxia occurs in endothelial cells. In support of
this concept, the transcription factor HIF-1α is increased
when angiotensin II stimulates endothelial cells in the
presence of high glucose concentrations (Williams et al.
1995). Superoxide and glycosylation probably do not
affect HIF-1α itself, but rather enzymes that regulate its
stability, in particular proline hydoxylases (Ratcliffe
2006). Such mechanisms may result in the enhanced
production of important factors in diabetes, such as VEGF
and TGF-β.

Hyperglycemic memory

A common feature of all above-mentioned pathways is their
reversible nature, once hyperglycemia is corrected. However,
the progression of microvascular complications once
euglycemia is re-established in dogs has led to the
hypothesis that the mechanisms associated with hypergly-
cemia have an irreversible nature causing the persistence
of vascular damage involving the so-called hyperglycemic
memory (Engerman and Kern 1987; Roy et al. 1990). This
phenomenon has been confirmed in man (King 1996; Fioretto
et al. 1998). Two mechanisms have been hypothesized to
explain this phenomenon. First, the generation of irreversible
advanced AGEs, the products of non-enzymatic glycation of
proteins and nucleotides. In addition to their aforementioned
effects, AGE-mediated cross-linking of collagens contributes
to long-lasting arterial stiffness. As the visco-elastic artery
dampens the pressure wave that is transferred to the periphery
after every heart beat, arterial stiffness increases the force
with which this pulse arrives in the microvessels of the
extremities, with potential damaging effects in, for example,
small resistance vessels in the legs. Second, enduring effects
of oxidative stress induced by hyperglycemia have been
proposed to induce enduring inflammatory activation
(Dworakowski et al. 2008; Munzel et al. 2008; Rask-Madsen
and King 2007). Recently, Forbes et al. (2008) have
suggested that oxidative stress might also affect the
methylation of specific proteins and thus contribute to
hyperglycemic memory.

Taken together, hyperglycemia causes the activation of
endothelial cells by various pathways resulting in endothelial
dysfunction and vascular disease, in particular microangiop-
athy and arterial stiffness. Normalization of glucose levels is
necessary to counteract these effects, but hyperglycemic
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memory causes a delay in the effectiveness of this treatment
in reducing various dysfunctions and complications.

Endothelial dysfunction in type 2 diabetes

Type 2 diabetes can be characterized by insensitivity to
insulin-mediated glucose uptake, which in combination
with impaired beta cell function increases circulating blood
glucose. Blood vessels of patients with type 2 diabetes
(Okon et al. 2005) and diabetic mice (Okon et al. 2003;
Bagi et al. 2003) show attenuated endothelium-dependent
vasodilation, which is caused by attenuation of NO
production and decreased NO sensitivity of the smooth
muscle cells, enhanced breakdown of NO by reactive
oxygen species, decreased Akt phosphorylation, and
enhanced vasoconstrictor tone (Okon et al. 2005). Although
the precise origins of endothelial dysfunction in type 2
diabetes remain unclear, several studies have suggested that
endothelial and vascular dysfunction initiates well before
the occurrence of overt hyperglycemia. Impairment of
endothelium-dependent vasodilation has been reported in
first-degree relatives of type 2 diabetes subjects (Caballero
et al. 1999; Goldfine et al. 2006) and subjects with impaired
glucose tolerance (Caballero et al. 1999).

Dyslipidemia

In addition to hyperglycemia, dyslipidemia and chronic
inflammatory activation of adipose tissue and the arterial
wall are hallmarks of type-2 diabetes and its vascular
complications (Mazzone et al. 2008). Triglyceride-rich
lipoproteins are usually elevated in diabetes and contribute
to increased levels of NEFA in the circulation. Remnants of
triglyceride-rich lipoproteins can affect endothelial cells
directly via the activation of the receptor LOX-1, by which
they stimulate NAD(P)H oxidase-dependent superoxide
formation and induce cytokine release and apoptosis in
endothelial cells in vitro (Shin et al. 2004). NEFA also can
activate endothelial cells (see below). Furthermore, triglyc-
eride-rich lipoproteins and their remnants, together with
(oxidized) cholesterol-delivering low density lipoproteins
(LDL), can activate endothelial cells indirectly as they
contribute to lipid accumulation in macrophages and
subsequently the production of inflammatory cytokines and
oxidized products (Kume et al. 1992; Vora et al. 1997;
Saraswathi and Hasty 2006). LDL oxidation can occur
within the oxidative milieu of an inflamed vessel wall, after
which oxidized products can damage or activate vascular
cells and induce the expression of leukocyte adhesion
molecules on the endothelium (Vora et al. 1997; Cybulsky
and Gimbrone 1991). As type 2 diabetes patients have
smaller LDL particles, their passage through the arterial

endothelium will be increased, whereby they can contribute
more to cholesterol delivery into the arterial wall. This
accumulation is aggravated by a reduction in cholesterol-
removing HDL particles, which is generally observed in the
plasma of type 2 diabetes patients. In addition to effects on
the arterial wall, the altered circulating lipids in type 2
diabetes contribute to lipid loading and inflammatory
activation of adipose tissue and the production of adipokines
with subsequent vascular effects, as further explained below
(see Fig. 3).

Genetic predisposition for the development of type 2
diabetes

The “thrifty gene” theory of Neel (1962) suggests genetic
selection for the storage of nutrients, which, with regard to
today’s Western lifestyle, predisposes to the development of
obesity and diabetes. Studies of ob/ob mice with obesity
caused by leptin deficiency and of db/db mice with type 2
diabetes and obesity attributable to a defective leptin
receptor support this hypothesis. Heterozygous animals,
ob/+ and db/+, survive longer during fasting (Coleman
1979). Mutations in the leptin receptor in humans have
been described to be associated with the development of
obesity (Clement et al. 1998) and to be expressed in the
vasculature (Bouloumie et al. 1998). Leptin-deficient ob/ob
mice have impaired endothelial dysfunction, which is
restored after leptin administration through a mechanism
in which leptin enhances NO release from the endothelium
(Winters et al. 2000). Db/db mice (Pannirselvam et al.
2002) and fa/fa zucker rats (Eringa et al. 2007), both with
defective leptin receptors, also show endothelial dysfunc-
tion. Furthermore, the fa/fa rats exhibit selective resistance
to insulin signaling and, in particular, a selective resistance
to the activation of PI3 kinase, which normally is involved
in NO production (Jiang et al. 1999). These data indicate
that comparable mechanisms are involved in endothelial
dysfunction in type 2 diabetes and obesity.

Other interesting candidates in the genetic predisposition
of endothelial function in type 2 diabetes are proteins from
the insulin signaling pathway, e.g., insulin receptor sub-
strates (IRS) and eNOS but also newly discovered proteins
present in the vascular endothelium such as PKCθ and
PPARγ (131–134). Polymorphisms in IRS proteins are
associated with insulin resistance (Sesti et al. 2001) and
disrupted IRS phosphorylation in endothelial cells leading
to decreased NO production (Kim et al. 2005a). However,
the exact role of IRS in endothelial dysfunction in the
microvasculature is not completely clear. PKCθ has
recently been discovered in the vascular endothelium of
mice and humans and is involved in disturbed insulin-
mediated vasoreactivity induced by fatty acids (Bakker et
al. 2008). PKCθ knock-out mice are protected from acute
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fatty-acid-induced insulin resistance (Kim et al. 2004), and
an overactive PKCθ gene could be involved in endothelial
dysfunction in type 2 diabetes. PPARγ is mostly known for
regulating adipogenesis and lipid metabolism (Kliewer et
al. 2001) but has also been described to be present and
active in vascular endothelium (Marx et al. 1999).
Interference with PPARγ signaling produces endothelial
dysfunction via a mechanism involving oxidative stress and
causes vascular hypertrophy and inward remodeling (Beyer
et al. 2008). The observation of the regulation of insulin
signaling by NEFA and PKCθ additionally suggests a
relationship between fatty-acid-induced activation of PKCθ
and endothelial dysfunction in obesity and diabetes.

Impaired insulin signaling and ER stress

Insulin resistance and reduced insulin signaling are associated
with endothelial dysfunction. Defective insulin signaling
causes inadequate production of NO and ET-1. In the resting
pre-prandial state, the vasodilator and vasoconstrictor
effects of insulin are in balance, and insulin adapts this
balance to the demands of the the body to produce either
more NO, causing vasodilation, or more ET-1, causing
vasoconstriction. However, in obese states, the balance of
vasodilation and vasoconstriction is shifted toward vaso-
constriction. In obese rats, these signaling pathways are
differently affected: insulin-mediated activation of the Akt
and NO pathway is reduced, but insulin-mediated activa-

tion of ERK1/2 and ET-1 is intact (Jiang et al. 1999).
Accordingly, we have recently found that insulin induces
ET-1-dependent vasoconstriction in skeletal muscle
arterioles of obese rats (Eringa et al. 2007). Experimental
studies in healthy rats have demonstrated that ET-1
infusion in vivo severely blunts the increased capillary
recruitment and limb blood flow caused by insulin (Ross
et al. 2007).

The manner in which insulin signaling becomes im-
paired in the vascular endothelium is still poorly under-
stood. In type 2 diabetes, endoplasmic reticulum stress (ER
stress) may represent a plausible link between insulin
resistance and endothelial dysfunction.

In non-endothelial cells (liver, adipose tissue, pancreas)
and intact mice, a so-called unfolded protein stress or ER
stress has been reported to be involved in disturbed insulin
signaling (Ozcan et al. 2004). Increases in protein synthesis,
enhanced generation of ROIs, and other aspects of
metabolic stress can cause ER stress, which evokes a series
of reactions that result in changes in the translation of
proteins, activation of JNK (Jun kinase) and IKK (IκB
kinase), and induction of new, often inflammation-related
genes (for reviews, see Eizirik et al. 2008; Zhang and
Kaufman 2008). This results simultaneously in a reduction
of IRS-1-mediated insulin signaling and a state of low-
degree inflammatory activation (Fig. 4; Ozcan et al. 2004,
2006), suggesting not only the potential role of ER stress as
a link between obesity, insulin resistance, and diabetes, but

Fig. 3 Inflammation of adipose tissue and altered secretion of
adipokines. Inflammation in adipose tissue is probably initiated by
the secretion of low amounts of tumor necrosis factor-alpha (TNFα),
as a consequence of, for example, changes in membrane cholesterol
because of the increased size of the adipocytes. TNFα is able to
regulate the secretion of other adipokines by stimulating pre-

adipocytes to produce MCP-1 and then the recruitment of macro-
phages (Xu et al. 2003; Wellen and Hotamisligil 2003). Subsequently,
TNFα creates a hierarchy of cytokines within adipose tissue (Coppack
2001; Trayhurn and Wood 2004) and will change the excretion profile
of adipose tissue into a pro-inflammatory state (represented by the
increased letter size of the indicated adipokines)
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also that, in mice, a reduction of ER stress by chemical
chaperones might restore glucose homeostasis in type 2
diabetes. Endothelial cells have a high protein synthesis
capacity, are maximally exposed to elevations of nutrients in
the blood, contain all the key proteins involved in ER stress
(Luo et al. 2008), and have been shown indeed to display ER
stress after exposure to oxidized phospholipids (Gharavi et
al. 2007) or homocysteine (Austin et al. 2004). Therefore,
ER stress probably contributes to the reduced NO availability
and increased expression of leukocyte adhesion molecules
that accompany endothelial dysfunction.

Moreover, Eringa et al. (2006) have shown that JNK can
be activated by TNFα in the endothelium of skeletal muscle
arterioles of rat and causes a reduced vasodilatory response
to insulin. JNK is thought to be able to phosphorylate
serine-residues on IRS-1 and therewith to reduce the ability
of insulin to phosphorylate tyrosine residues on IRS-1, all
of which becomes manifest as insulin resistance (Hotamisligil
2005; Taniguchi et al. 2006). As a consequence, insulin-
mediated AKT activation and NO production are impaired.
As TNFα can induce ER stress in other cells (Xue et al.
2005), TNFα-induced activation of JNK in endothelial cells
may also involve activation of the ER stress signaling
pathway. Figure 4 shows a simplified scheme of the way that
ER stress can affect endothelial cells, comparable to other
cell types. The precise role of ER stress in endothelial
dysfunction in type 2 diabetes is a challenging new field that
needs to be further examined.

The involvement of ER stress may be complex. The
uncoupling of eNOS and subsequent generation of peroxy-
nitrite and exposure to inflammatory mediators, such as
TNFα, can cause ER stress (Xue et al. 2005; Dickhout et al.
2005). However, ER stress may also facilitate eNOS
impairment and TNFα generation. Therefore, a mutual
interaction probably exists between factors that cause ER
stress and factors that are generated by ER stress. This can
produce a type of cell activation that is self-perpetuating and
therefore difficult to normalize. In particular, the growth and

displacement of adipose tissue and adipokines derived
thereof can markedly enhance endothelial activation and
dysfunction.

Obesity and endothelial dysfunction

Obesity is an independent risk factor for coronary (Al
Suwaidi et al. 2001) and systemic (Brook et al. 2001)
endothelial dysfunction, which are detectable before the
onset of diabetes (Galili et al. 2007). Impaired vasodilator
responses at the level of the resistance vessels of the
nutritive capillary beds develops progressively, together
with an increase in adiposity (de Jongh et al. 2006;
Perticone et al. 2001; Serne et al. 1999). The close
association between measures of adiposity and microvascular
function suggests communicative pathways between adipose
tissue and the microvasculature. Obesity, in particular
visceral obesity, is strongly associated with insulin resistance
(Reaven 1995). Therefore, the presence of endothelial
dysfunction in obese subjects or animal models might be
related to the insulin-resistant state. However, a possible role
of obesity in inducing endothelial dysfunction before the
development of and independent of insulin resistance has
been suggested in a rat model of diet-induced obesity (Erdei
et al. 2006). We have recently hypothesized that perivascular
fat has an important effect on endothelial vasoregulation in
diabetes and obesity. To clarify the effect of perivascular fat
on endothelial function and vasoregulation, we shall briefly
survey inflammation and adipokine production by adipose
tissue.

Obesity and inflammation

Changes in the regulation of nutrient metabolism in obesity
promote nutrient storage in adipose tissue (Schoeller and
Buchholz 2005). This change in nutrient metabolism, rather
than steady-state glucose and insulin concentrations, causes
a pro-inflammatory state in adipose tissue. Adipose tissue

Fig. 4 Representation of ER stress inducing endothelial dysfunction in
type 2 diabetes. In various cells, the accumulation of unfolded proteins in
the endoplasmic reticulum (ER stress) can activate the proteins inositol-
requiring 1α (IRE), double-stranded RNA-dependent protein kinase
(PKR)-like ER kinase (PERK), and activating transcription factor 6
(ATF6) in the ER membrane and cause diverse effects resulting in

altered gene induction, protein translation, and cell signaling. Activated
by ER stress, IRE starts to phosphorylate Jun kinase (JNK), which
induces disturbed insulin signaling in endothelial cells by inhibiting
IRS1 by phosphorylation at ser307, and IκB kinase (IKK), which leads
to activation of NFκB and inflammatory activation. This causes a
reduced NO production by endothelial cells
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exhibits distinct secretory profiles that depend on adipose
tissue mass. The secretion of a number of bioactive
molecules, such as NEFAs, TNFα, IL-6, angiotensinogen
(Harte et al. 2003a; Rahmouni et al. 2004), and plasmin-
ogen activator inhibitor type 1 (Harte et al. 2003b;
Shimomura et al. 1996), is significantly increased in
adipose tissue from obese animals and humans. In contrast,
the production of adiponectin, a hormone that increases
fatty acid oxidation and inhibits hepatic glucose production,
is diminished (Arita et al. 1999; Combs et al. 2002). Of
note, weight loss as a result of lifestyle changes is associated
with a reduction in the plasma levels of inflammatory
markers, such as IL-6, IL-18, and C-reactive protein, and
with an increase in the circulating concentration of adipo-
nectin (Esposito et al. 2003). These observations strongly
support the notion that the production of adipose-derived
signals is regulated at least partly by the adipose tissue mass.

Inflammation in adipose tissue, as observed in obesity, is
characterized by an increased size and number of fat cells
and predicts the number of macrophages in adipose tissue
(Xu et al. 2003; Weisberg et al. 2003). In obesity, 50% of
adipose tissue consists of macrophages and the size of the
fat cells is approximately 120 μm, compared with values of
5%–10% macrophages and a fat cell size of 70 μm in the
adipose tissue of lean mice (Hauner 2004; Weisberg et al.
2003). Inflammation in adipose tissue is probably initiated
by the secretion of low amounts of TNFα, which stimulate
pre-adipocytes to produce MCP-1 resulting in the recruitment
of macrophages (Xu et al. 2003; Wellen and Hotamisligil
2003) and a changed excretion profile (Fig. 3).

Adipokines

Adipose tissue secretes a variety of adipokines, such as
fatty acids, TNFα, leptin, adiponectin, and probably many
more, that modulate vascular tone, nutritive blood flow, and
insulin sensitivity. These adipokines alter smooth muscle
contractility, both directly and indirectly, by interacting
with endothelium-dependent vasodilation.

NEFA impair endothelium-dependent vasodilation in
conduit arteries (Lundman et al. 2001; Davda et al. 1995)
and in the microcirculation (de Jongh et al. 2004), insulin-
mediated capillary recruitment, and glucose uptake in
humans and rats (Clerk et al. 2002; de Jongh et al. 2004).
Insulin-mediated nutritive blood flow is blunted by lipid
infusion, and this effect correlates well with the inhibition
of insulin-mediated muscle glucose uptake (Clerk et al.
2002). Whereas data from isolated rabbit femoral arteries
suggest that NEFA directly decrease eNOS activity (Davda
et al. 1995), evidence from aortic endothelial cells has
shown that NEFA also inhibit the insulin-mediated activa-
tion of Akt and eNOS (Kim et al. 2005b). Indeed, we have
recently found, in muscle resistance arteries, that the fatty

acid, palmitic acid, induces insulin-mediated vasoconstric-
tion of muscle resistance arteries at concentrations observed
in obesity, through the inhibition of the insulin-mediated
activation of Akt and eNOS. PKCθ plays an important role
in this interaction (Bakker et al. 2008). This study suggests
a direct interaction between free fatty acids (FFA) and
insulin in the muscle microcirculation, leading to vasocon-
striction of muscle resistance arteries. We propose that
NEFA shift the balance of insulin’s vasoactive effects
toward insulin-mediated vasoconstriction in skeletal muscle
arterioles (Fig. 5), thereby causing a reduction in blood
flow and capillary perfusion, which results in decreased
glucose delivery and uptake in muscle.

TNFα release by adipose tissue is increased in obesity
(Hotamisligil et al. 1993). Based on animal and in vitro
data, TNFα has been proposed to reduce all of the
following: endothelial NO production, insulin-stimulated
glucose uptake in skeletal muscle, capillary recruitment
(Youd et al. 2000), insulin-mediated vasodilation in muscle
resistance arteries (Eringa et al. 2006), and NO production
in aortic endothelial cells (Kim et al. 2001; Li et al. 2007).
Several proteins have been shown to mediate the interaction
between TNFα and insulin, such as p38 mitogen-activated
protein kinase (Li et al. 2007), JNK (Eringa et al. 2006),
and IKK (Kim et al. 2001). A new source of TNFα that has
recently been identified is perivascular adipose around
coronary arteries (Mazurek et al. 2003). This implies that
TNFα is produced by tissue directly adjacent to the
vascular wall and may mean that circulating levels of

Fig. 5 Effect on insulin signaling by TNFα or non-esterified fatty
acids (NEFA). Normal insulin signaling is mediated by either insulin
receptor substrate (IRS), Akt, eNOS, and NO production leading to
vasodilation or by ERK1/2 and ET-1 production leading to vasocon-
striction. TNFα and NEFA affect the insulin signaling pathway by the
activation of JNK or PKCθ, leading to impaired Akt activation
induced by TNFα and NEFA, and increase in ERK1/2 activation by
NEFA, both of which lead to insulin-mediated vasoconstriction in
muscle resistance arteries
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TNFα, which remain low in obesity (Hotamisligil et al.
1995), underestimate the biologically relevant concentra-
tions of this cytokine.

Leptin was the first endocrine product of adipose tissue
to be identified (Zhang et al. 2005) and has recently been
found to regulate vascular function through local (Nakagawa
et al. 2002; Vecchione et al. 2003) and central (Aizawa-Abe
et al. 2000) mechanisms. Leptin is a vasodilator in coronary
arteries (Minokoshi et al. 2002) and in human forearm
resistance arteries (Nakagawa et al. 2002) through endothe-
lium-dependent (Sierra-Honigmann et al. 1998) and endo-
thelium-independent mechanisms (Nakagawa et al. 2002). A
direct interaction between leptin and insulin has been shown
in aortic endothelium. Leptin and insulin, in a synergistic
mechanism, have been shown to enhance NO production by
the phosphorylation of eNOS at Ser1177 (Vecchione et al.
2003). In contrast to these vasodilator effects, leptin also
increases sympathetic nerve activity (Aizawa-Abe et al.
2000; Rahmouni et al. 2005) and enhances ET-1 release
from vascular endothelium (Quehenberger et al. 2002).
Paradoxically, circulating leptin levels are elevated in
obesity, apparently contradicting the beneficial effects of
leptin described above. To explain this, recent studies have
demonstrated the impairment of leptin’s metabolic effects
and leptin-induced NO production, i.e. “leptin resistance”, in
obesity (Beltowski et al. 2003; Rahmouni et al. 2005) and
human hypertension (Tsuda and Nishio 2004). Leptin
resistance may be caused by inflammatory mechanisms, as
CRP impairs intracellular leptin signaling (Correia et al.
2002; Chen et al. 2006). Therefore, resistance to the
vasodilator effects of leptin may contribute to vascular
dysfunction in obesity.

Adiponectin has recently emerged as an adipose-
tissue-derived modulator of endothelial function. Adiponectin
increases NO production in vascular endothelium by increasing
the Ser 1177 phosphorylation of eNOS (Chen et al. 2003;
Hattori et al. 2003), inhibits endothelial cell activation (Chen
et al. 2003; Kobashi et al. 2005; Ouchi et al. 1999), and
associates negatively with risk of a cardiovascular event
(Hotta et al. 2000). In obesity, adiponectin levels are decreased
(Arita et al. 1999), contributing to reduced vascular function
(Pilz et al. 2005). In the coronary circulation, adiponectin
produced by epicardial adipose tissue regulates the cardiac
flow reserve (Date et al. 2006).

Local versus systemic adipokine secretion

Obesity-related consequences, such as insulin resistance
and endothelial dysfunction, are dependent on the location
of fat accumulation. For example, abdominal adipose tissue
contains more monocytes and macrophages than subcutaneous
depots. Morphological studies have revealed substantial
differences between non-obese subcutaneous and intra-abdom-

inal fat depots. Macrophages have been found in direct contact
with mature adipocytes in abdominal adipose tissue (Bornstein
et al. 2000). Moreover, adipose tissue from obese mice
exhibits adipocytes with an increased size and clusters of
small nucleated cells, compared with non-obese mice. These
small nucleated cells form giant cells by fusion of multiple
macrophages; this is also observed in instances of chronic
inflammation (Xu et al. 2003). Furthermore, waist to hip ratio,
a measure of abdominal fat accumulation, is correlated with
cardiovascular disease and inflammatory factors, such as
TNFα (Seidell et al. 2001; Hotamisligil et al. 1995).
Population studies have suggested that an increased waist-
to-hip ratio may reflect a relative abundance of abdominal fat
(increased waist circumference) and peripheral muscle atrophy
(decreased hip circumference; Seidell et al. 1997). The
abundance of abdominal adipose tissue is associated with
macrophage infiltration and cytokine production (Bornstein et
al. 2000). The peripheral muscle atrophy is associated with a
low glucose uptake in muscle and a decrease in insulin
clearance (Seidell et al. 1997).

Local adipokine secretion causes a local high concen-
tration of inflammatory products; this is often miscalculated
because of an inability to measure locally produced factors
but can predict inflammation by systemic inflammation
markers. However, increasing fat pads around insulin-
responsive organs such as the vasculature, skeletal muscle,
and cardiac tissue cause local high concentrations of
adipokines, which may have huge effects on insulin
signaling. Perivascular adipose tissue (PAT) is present
around all conduit arteries and in some microvascular beds,
such as that of the mesentery (Verlohren et al. 2004). We
have observed that PAT around skeletal muscle arterioles is
increased in a diabetic mouse model (Fig. 6). Recent
evidence has shown that the vascular adventitia, and
especially PAT, regulate vascular tone (Gollasch and
Dubrovska 2004; Soltis and Cassis 1991), endothelium-
dependent vasodilation (Rey et al. 2002), vessel wall
thickness (Meng et al. 2006), angiogenesis (Cai et al.
2003; Rehman et al. 2004), and inflammation (Moos et al.
2005; Okamoto et al. 2001; Mazurek et al. 2003). Skeletal
muscle is responsible for the majority of whole-body
insulin-stimulated glucose disposal and is therefore a
relevant target tissue in obesity and type 2 diabetes. The
accumulation of adipose tissue interspersed within skeletal
muscle and triglycerides within muscle cells are related to
insulin resistance, at least in sedentary subjects. Healthy
muscle is characterized by the capacity to utilize either lipid
or carbohydrate fuels and to switch effectively between
these fuels depending on the stimulus and the energy
demands. The inflexibility of skeletal muscle to switch
between fat and glucose fuels appears to be an important
aspect of insulin resistance of skeletal muscle in obesity and
type 2 diabetes (Goodpaster and Wolf 2004).

178 Cell Tissue Res (2009) 335:165–189



Taken together, systemic measurements of circulating
adipokines probably lead to an underestimation of the
actual concentration and damaging effects of locally
produced adipokines.

Endothelial dysfunction, type 2 diabetes, and hypertension

Endothelial dysfunction and type 2 diabetes are accompa-
nied by cardiovascular disorders, such as peripheral and
coronary arterial disease caused by atherosclerosis, hyper-
tension, and stroke. Endothelial injury reflected in endo-
thelial dysfunction has been indicated as an early hallmark
of the development of atherosclerosis (Ross 1999) and
hypertension (Serne et al. 2006). It affects the development
of type 2 diabetes, whereas the metabolic disturbances of
type 2 diabetes in turn further aggravate the progression of
these diseases. Similarly, obesity contributes to endothelial
dysfunction and metabolic alterations that accelerate the
vascular diseases and the occurrence of their clinical
complications.

Obese hypertensive humans show insulin-induced
vasoconstriction (Gudbjornsdottir et al. 1996), increased
ET-1–dependent vasoconstrictor tone, and decreased NO-

dependent vasodilator tone at the level of the resistance arteries
(Cardillo et al. 2004). In hypertension, the structure and
function of the microcirculation are altered (Levy et al. 2001).
Blood pressure is inversely related to insulin sensitivity and
capillary recruitment, a consequence of reduced endothelium-
dependent vasodilation at the pre-capillary level (Serne et al.
1999). Infusion of ET-1 in vivo blunts capillary recruitment
and limb blood flow caused by insulin (Ross et al. 2007) and
results in increased blood pressure and reduced muscle
glucose uptake. In addition, insulin resistance in spontaneous-
ly hypertensive rats is associated with endothelial dysfunction
characterized by an imbalance between NO and ET-1
production (Potenza et al. 2005).

Conclusion

Endothelial dysfunction contributes to the generation of
insulin resistance and subsequent vascular complications of
type 2 diabetes. The close interaction of adipocytes with
arteries and arterioles facilitates the exposure of endothelial
cells to adipokines, particularly when inflammation activates
the adipose tissue, and thus affects vasoregulation and
capillary recruitment in skeletal muscle.

Fig. 6 Increased local perivascular adipose tissue in skeletal muscle
arterioles of Db/Db mice. After dissection of the gracilis muscle, the
vasculature of the corresponding muscle in the control and Db/Db
mice (b, e) becomes visible (A artery, V vein, F femoral artery). At

higher magnification, the artery and vein can be distinguished (c, f).
The Db/Db mice (d-f) possess more and larger fat cells surrounding
the gracilis artery compared with control mice (a-c). Bars 1 mm (b, e),
0.25 mm (c, f)
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Does endothelial dysfunction precede insulin resistance
in type 2 diabetes and obesity?

Dyslipidemia and circulating NEFA aggravate type 2
diabetes and its cardiovascular sequelae (Mazzone et al.
2008). Interestingly, several lines of evidence point to a
causal role of endothelial dysfunction in insulin resistance,
particularly in muscle. However, the discussion regarding
the causal relationship between type 2 diabetes and
endothelial dysfunction is complicated, on the one hand,
because various endothelial dysfunctions, namely reduced
NO production and vasodilation, microalbuminuria, elevat-
ed plasma vWF, and low grade inflammatory activation
accompanied by increased circulating VCAM and C-
reactive protein, are independently associated with risk of
cardiovascular complications in patients with diabetes and
glucose intolerance (Jager et al. 2000). On the other hand,
endothelial dysfunction(s) and metabolic dysregulation in
these patients probably act mutually on each other, so that
the chicken and egg question will be difficult to solve.
Notwithstanding, several arguments indicate that endothe-
lial dysfunction as reflected by impaired vasoregulation can
indeed contribute to reduced insulin sensitivity in skeletal
muscle tissue.

Muscle insulin resistance is the main contributor to
reduced insulin action and impaired glucose uptake and,
thereby, increased blood glucose levels. Skeletal muscle
accounts for 80% of the insulin-mediated glucose uptake
after a meal (DeFronzo 1988) and becomes resistant to
insulin in type 2 diabetes and obesity (DeFronzo et al.
1992). Interference with endothelial NO production results
in lower insulin sensitivity in striated muscle in both mice
and rats (Vincent et al. 2003; Shankar et al. 2000).
Furthermore, in obesity, elevated plasma NEFA hinders
the ability of insulin to stimulate muscle glucose uptake
(Clerk et al. 2002). NEFA also have major effects on
microvasculature and activate PKCθ in the endothelium of
resistance arteries and thereby induce insulin-mediated
vasoconstriction (Bakker et al. 2008). Other studies have
shown that lipid infusion reduces capillary recruitment (de
Jongh et al. 2004) and glucose uptake in muscle (Clerk et
al. 2002). Hence, both NO production and the response to
NEFA by endothelial cells can cause a defect of muscle
glucose uptake by an impairment of the microcirculation
leading to vasoconstriction. Several other reports have
demonstrated a blunted endothelial response before the
onset of type 2 diabetes and a reversed effect of endothelial
function after the restoration of insulin sensitivity in, for
example, obesity-associated insulin resistance. Vascular
reactivity (responses to acetylcholine and sodium nitroprus-
side) in both microcirculation and macrocirculation has
been reported to be reduced not only in diabetic subjects,
but also in insulin-resistant subjects and relatives of diabetic

subjects without increased levels of insulin or glucose.
These data support the concept that endothelial dysfunction
predicts the development of insulin resistance and diabetes.
In addition, elevated plasma levels of biomarkers reflecting
endothelial dysfunction, such as E-selectin, ICAM-1, and
VCAM-1, are powerful independent predictors of type 2
diabetes in initially healthy people (Meigs et al. 2004).

The mechanisms by which endothelial dysfunction and
sub-clinical inflammation may lead to the development of
type 2 diabetes are not completely clear. Endothelial
dysfunction has been suggested to decrease insulin-mediat-
ed capillary recruitment and microvascular redistribution of
skeletal muscle blood flow from non-nutritive to nutritive
flow paths, limiting insulin availability to skeletal muscle
and insulin delivery to the interstitium (Clark et al. 2003).
Whatever the mechanism may be, the finding that an
improvement in endothelial dysfunction can lead to a
decrease in insulin resistance and perhaps to a reduction
in the incidence of type 2 diabetes has been appreciated in
the secondary analyses of some trials of medications known
to improve vascular function (Egashira et al. 1994;
Caballero et al. 2004).

Taken together, both metabolic and vascular processes
contribute to the development of type 2 diabetes. Notwith-
standing a mutual interaction of these aspects during the
etiology of diabetes, the initial dysfunction of endothelium
contributes to this process, even prior to increased hepatic
glucose production (Fig. 7).

Concluding remarks and perspectives

The foregoing discussion makes clear that endothelial
dysfunctions are associated and often causally related to the
vascular complications of type 1 and/or 2 diabetes and insulin-
resistance associated with obesity, in particular those related to
the improper generation of ROI, the reduced availability of
NO after stimulation by insulin and other vasoactive agents,
the low-grade inflammatory activation of the endothelium,
and the altered composition of the extracellular matrix.

Hyperglycemia

Hyperglycemia is an important causal factor in endothelial
dysfunction and plays a dominant role in the complications
of type 1 diabetes, in particular the development of
nephropathy, retinopathy, neuropathy associated with the
diabetic foot, and the occurrence of arterial stiffness. Some
effects of hyperglycemia are long lasting and provide
affected tissues a type of hyperglycemic memory. Early
detection of hyperglycemia and the control of plasma
glucose levels are important for reducing hyperglycemia-
induced vascular complications.
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Although the normalization of insulin secretion and the
improvement of glucose levels in the circulation by
pharmacological treatment or pancreatic island transplanta-
tion is the prime approach to reducing the complications of
hyperglycemia, the inefficacy of current methods and the
occurrence of hyperglycemic memory mean that we have to
look for additional treatments. ROI overproduction from
mitochondrial electron transport chains serves as a causal
link between elevated glucose and three major pathways
responsible for hyperglycemic damage, namely the activa-
tion of the hexosamine pathway, the increased formation of
AGE, and the activation of PKC isoforms. One possible
way to reduce ROI is the detoxification of superoxide
radicals by increasing superoxide dismutase (SOD). A
recent study in mice with overexpression of SOD in their
endothelial cells has shown that the progression of diabetic
retinopathy in vivo can be suppressed by reducing the
expression of VEGF and fibronectin (Goto et al. 2008).
Other ways of scavenging ROI or of inhibiting ROI
generating NADPH oxidase in vascular cells are presently
being evaluated. Another option for reducing hyperglycemia
effects is the reduction of glycolysis intermediates by
bezotiamine, which appears effective in the mouse eye, or
by interfering with specific pathways in the endothelial
cells. Inhibition of VEGF in the eye appears promising,
whereas the reduction of PKC activation and inhibitors
targeted to AGE production reduces vascular complications
in diabetic rodents but have not been proven to be effective
in man.

Impaired insulin signaling

Despite also being important in type 2 diabetes, the
normalization of the plasma glucose concentration has only
a small effect on the reduction of cardiovascular disease
(peripheral and coronary atherosclerosis, hypertension, and
stroke), suggesting that other factors have a larger impact.
As outlined above, the improper functioning of the
endothelium and blood supply to tissues, such as muscle,
has a profound effect on the insulin sensitivity of these
tissues and contributes to insulin resistance. In the
subsequent chain of reactions that end with overt type 2
diabetes, a mutual interaction between metabolic dysregula-
tion and vascular dysfunction occurs, which is additionally
fueled by genetic or acquired dyslipidemia. Normalization of
metabolic control and endothelial/vascular function are
therefore both required. Furthermore, we have indicated the
importance of adipose tissue to vascular functioning. In
particular, the extension of perivascular fat directly adjacent
to the arterioles and arteries and the enhanced production of
adipokines by inflammation of this adipose tissue provide a
new paracrine system with a high competence of inducing
insulin resistance in the skeletal muscle. Knowledge regard-
ing whether and in what manner the extent and activity of
this perivascular fat is influenced by diet and exercise, two
important factors in influencing insulin sensitivity, will be of
interest.

Various drugs are used to improve insulin sensitivity. In
addition to drugs that aim at restoring pancreatic function

Fig. 7 Endothelial dysfunction
versus type 2 diabetes. Mutual
interaction of metabolic and
vascular effects contribute to the
development of type 2 diabetes,
which can be initiated by hy-
perglycemia, genetic factors,
obesity, or other unidentified
factors. One possible route by
which endothelial dysfunction
results in type 2 diabetes is
showed in A-B-C-D, in which
impaired endothelial vasodila-
tion results in a reduction of
both capillary recruitment and
glucose uptake, with a resulting
increase in the levels of blood
glucose. A possible route by
which type 2 diabetes results in
endothelial dysfunction (showed
in 1–2–3) is by the formation of
reactive oxygen intermediates
produced by the glycation path-
way
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and normalization of blood glucose, ACE inhibitors and
PPAR-γ agonists, such as thiazolidinediones (TZD), are
regularly employed to treat diabetes mellitus type 2. ACE
inhibitors reduce the conversion of angiotensin 1 into the
potent angiotensin 2 and simultaneously reduce the break-
down of the vasoactive agent bradykinin. These inhibitors
have an improving effect on nephropathy and cardiovascu-
lar complications in all diabetes patients. The main
beneficial effects of TZD are the improvement of insulin
sensitivity and glucose tolerance, the generation of small
insulin-sensitive adipocytes, and a decrease in inflammation
markers (Cock et al. 2004; Picard and Auwerx 2002). TZD
lead to an improvement in vascular function through either
a direct effect on the vascular wall or by reducing the
release of adipokines by adipose tissue (Tonelli et al. 2004).
Statins, which in addition to lowering plasma LDL
cholesterol, also reduce ROI production in endothelial cells
and improve endothelial function, are also known to reduce
cardiovascular disease in diabetes patients (Costa et al.
2006).

Another way to improve insulin sensitivity is to inhibit
the negative effects of adipokines on the induction of
insulin-mediated vasoconstriction. In isolated arteries, we
have shown that the insulin-mediated vasconstriction
induced by either TNFα or FFA can be abolished by the
inhibition of JNK or PKCθ activation, respectively (Bakker
et al. 2008; Eringa et al. 2006). Furthermore, mice models
with a genetic deletion of JNK or PKCθ are protected from
diet-induced insulin resistance. This makes JNK and PKCθ
good targets for improving insulin sensitivity.

Obesity and endothelial dysfunction

As obesity contributes to insulin resistance and endothelial
dysfunction, the reduction of circulating NEFA and weight
loss by diet and/or exercise or surgery can be used to
improve endothelial function in obesity. Overnight lower-
ing of FFA in obese women improves capillary recruitment,
independently from endothelial-dependent vasodilation,
whereas FFA elevation in lean subjects reduces both
capillary recruitment and endothelial vasodilation (de Jongh
et al. 2004). Hence, acute reduction in FFA levels is not
sufficient to improve endothelial function. In contrast,
weight loss is associated with a reduction of the long-term
total mortality from diabetes and heart disease (Adams et al.
2007), an improvement of insulin sensitivity, a decrease in
insulin production (Schernthaner and Morton 2008), and an
improvement of flow-mediated vasodilation (Williams et al.
2005). Most studies of the effect of weight loss by either a
low caloric diet (Sasaki et al. 2002; Raitakari et al. 2004),
diet, and exercise (Sciacqua et al. 2003), or diet and
medication (Bergholm et al. 2003) has shown positive
effects on endothelial dysfunction. Furthermore, Woo et al.

(2004) have demonstrated that the improvement in arterial
endothelial function is greater in diet plus exercise groups
compared with diet alone groups, because of an indepen-
dent effect of exercise training on improved arterial
function. Exercise is well known to have a positive effect
on endothelial function, and the additional improvement in
endothelial function by diet plus exercise is therefore
unsurprising. Even in hyperglycaemic obese mice, which
have totally blunted endothelial responses from birth, exercise
reverses vascular endothelial dysfunction (Moien-Afshari
et al. 2008).

Taken together, the effect of adipokines from adipose
tissue adjacent to the vessel wall is an important contributor
to endothelial dysfunction. An understanding of intervention
at the level of adipocytes and/or endothelial cells may thus
improve the treatment of metabolic disorders.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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