191 research outputs found

    Lignin-Degrading Bacteria in Paper Mill Sludge

    Get PDF
    The effluents generated in the paper industry, such as black liquor, have a high content of lignin and other toxic components; however, they represent a source of lignin-degrading bacteria with biotechnological potential. Therefore, the present study aimed to isolate and identify lignin-degrading bacteria species in paper mill sludge. A primary isolation was carried out from samples of sludge present in environments around a paper company located in the province of Ascope (Peru). Bacteria selection was made by the degradation of Lignin Kraft as the only carbon source in a solid medium. Finally, the laccase activity (Um-L−1) of each selected bacteria was determined by oxidation of 2,2â€Č-azinobis-(3-etilbencenotiazolina-6-sulfonate) (ABTS). Bacterial species with laccase activity were identified by molecular biology techniques. Seven species of bacteria with laccase activity and the ability to degrade lignin were identified. The bacteria Agrobacterium tumefasciens (2), Klebsiella grimontii (1), and Beijeinckia fluminensis (1) were reported for first time. K. grimowntii and B. fluminensis presented the highest laccase activity, with values of 0.319 ± 0.005 UmL−1 and 0.329 ± 0.004 UmL−1, respectively. In conclusion, paper mill sludge may represent a source of lignin-degrading bacteria with laccase activity, and they could have potential biotechnological applications

    Synthesis and electrochemical properties of Ti-Si alloys prepared by mechanical alloying and heat treatment

    Get PDF
    The aim of this work was to study the synthesis and electrochemical properties of Ti 2 wt %-Si alloys prepared by mechanical alloying (MA) and heat treatment. The MA process was performed under Ar atmosphere. The structural, morphological, and compositional evolutions during the milling and subsequent heat treatment were investigated by X-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. The electrochemical behavior was evaluated by open circuit potential and linear sweep voltammetry measurements. The results showed that the MA process promotes the formation of a supersaturated α-Ti-Si solid solution. During heat treatment, the Si remaining in the mechanically alloyed powders and the Si from the α-Ti-Si supersaturated solid solution reacted with Ti to form Ti-Si intermetallic compounds. These compounds have a fine and homogeneous distribution in the α-Ti matrix, which cannot be achieved by conventional casting methods. Additionally, the electrochemical evaluations revealed that the mechanically alloyed and heat-treated Ti 2 wt %-Si powders have better corrosion resistance in 1.63 M H2SO4 than the pure Ti and MA Ti-Si samples. This is likely due to the particular microstructure produced during the milling and subsequent heat treatment

    Challenge 2: From genes & circuits to behavior

    Get PDF
    Understanding the brain from genes and circuits to behavior is a major scientific challenge. The large repertoire of cell activities supporting behavior stems from an equally diverse range of specialized cell types, from neuron to glia. To untangle mechanisms underlying brain function, elementary processes should be dissected, from the complex machinery of signaling pathways at the level of single cells and synapses, to the intricate phenomena leading to orchestrated ensemble activity and the establishment of engrams driving memory-guided behaviors. In this chapter we identify the main key tasks required to address some of the open questions in the field, and discuss on the main issues and strategies

    Overall time evolution in phase-ordering kinetics

    Full text link
    The phenomenology from the time of the quench to the asymptotic behavior in the phase-ordering kinetics of a system with conserved order parameter is investigated in the Bray-Humayun model and in the Cahn-Hilliard-Cook model. From the comparison of the structure factor in the two models the generic pattern of the overall time evolution, based on the sequence ``early linear - intermediate mean field - late asymptotic regime'' is extracted. It is found that the time duration of each of these regimes is strongly dependent on the wave vector and on the parameters of the quench, such as the amplitude of the initial fluctuations and the final equilibrium temperature. The rich and complex crossover phenomenology arising as these parameters are varied can be accounted for in a simple way through the structure of the solution of the Bray-Humayun model.Comment: RevTeX, 14 pages, 18 figures, to appear in Phys. Rev.

    G-CORE a core for future graph query languages

    Get PDF
    We report on a community effort between industry and academia to shape the future of graph query languages. We argue that existing graph database management systems should consider supporting a query language with two key characteristics. First, it should be composable, meaning, that graphs are the input and the output of queries. Second, the graph query language should treat paths as first-class citizens. Our result is G-CORE, a powerful graph query language design that fulfills these goals, and strikes a careful balance between path query expressivity and evaluation complexity

    G-CORE a core for future graph query languages

    Get PDF
    We report on a community effort between industry and academia to shape the future of graph query languages. We argue that existing graph database management systems should consider supporting a query language with two key characteristics. First, it should be composable, meaning, that graphs are the input and the output of queries. Second, the graph query language should treat paths as first-class citizens. Our result is G-CORE, a powerful graph query language design that fulfills these goals, and strikes a careful balance between path query expressivity and evaluation complexity

    G-CORE a core for future graph query languages

    Get PDF
    We report on a community effort between industry and academia to shape the future of graph query languages. We argue that existing graph database management systems should consider supporting a query language with two key characteristics. First, it should be composable, meaning, that graphs are the input and the output of queries. Second, the graph query language should treat paths as first-class citizens. Our result is G-CORE, a powerful graph query language design that fulfills these goals, and strikes a careful balance between path query expressivity and evaluation complexity

    MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer

    Get PDF
    MicroRNA deregulation is frequent in human colorectal cancers (CRCs), but little is known as to whether it represents a bystander event or actually drives tumor progression in vivo. We show that miR-135b overexpression is triggered in mice and humans by APC loss, PTEN/PI3K pathway deregulation, and SRC overexpression and promotes tumor transformation and progression. We show that miR-135b upregulation is common in sporadic and inflammatory bowel disease-associated human CRCs and correlates with tumor stage and poor clinical outcome. Inhibition of miR-135b in CRC mouse models reduces tumor growth by controlling genes involved in proliferation, invasion, and apoptosis. We identify miR-135b as a key downsteam effector of oncogenic pathways and a potential target for CRC treatment

    Short-, mid-, and long-term complications after multisystem inflammatory syndrome in children over a 24-month follow-up period in a hospital in Lima-Peru, 2020–2022

    Get PDF
    ObjectiveTo determine the short-, mid-, and long-term complications after multisystem inflammatory syndrome in children (MIS-C) over a 24-month follow-up period in a hospital in Lima, Peru, 2020–2022, and to explore differences according to the immunomodulatory treatment received and type of SARS-CoV-2 virus circulating.MethodsAmbispective 24-month follow-up study in children <14 years of age diagnosed with MIS-C at the Hospital Nacional Edgardo Rebagliati Martins (HNERM).ResultsA total of 62 children were admitted with MIS-C. The most common short-term complications and serious events were intensive care unit (ICU) admission, invasive mechanical ventilation (IMV) due to respiratory failure, and shock; predominantly during the second pandemic wave (lambda predominance) and in children that received intravenous immunoglobulin (IVIG) plus a corticosteroid. Two patients died during the first wave due to MIS-C. During prospective follow-up (median of 24 months; IQR: 16.7–24), only 46.7% of patients were followed for >18–24 months. Of the total, seven (11.3%) patients were identified with some sequelae on discharge. Among the 43 remaining children, sequelae persisted in five (11.6%) cases (neurological, hematological, and skin problems). Six patients (13.9%) presented with new onset disease (hematologic, respiratory, neurological, and psychiatric disorders). One patient died due to acute leukemia during the follow-up period. None of them were admitted to the ICU or presented with MIS-C reactivation. Two patients presented persistence of coronary aneurysm until 8- and 24-month post-discharge.ConclusionIn our hospital, children with MIS-C frequently developed short-term complications and serious events during the acute phase, with less frequent complications in the mid- and long-term. More studies are required to confirm these findings

    Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century

    Get PDF
    South American (SA) societies are highly vulnerable to droughts and pluvials, but lack of long-term climate observations severely limits our understanding of the global processes driving climatic variability in the region. The number and quality of SA climate-sensitive tree ring chronologies have significantly increased in recent decades, now providing a robust network of 286 records for characterizing hydroclimate variability since 1400 CE. We combine this network with a self-calibrated Palmer Drought Severity Index (scPDSI) dataset to derive the South American Drought Atlas (SADA) over the continent south of 12°S. The gridded annual reconstruction of austral summer scPDSI is the most spatially complete estimate of SA hydroclimate to date, and well matches past historical dry/wet events. Relating the SADA to the Australia–New Zealand Drought Atlas, sea surface temperatures and atmospheric pressure fields, we determine that the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) are strongly associated with spatially extended droughts and pluvials over the SADA domain during the past several centuries. SADA also exhibits more extended severe droughts and extreme pluvials since the mid-20th century. Extensive droughts are consistent with the observed 20th-century trend toward positive SAM anomalies concomitant with the weakening of midlatitude Westerlies, while low-level moisture transport intensified by global warming has favored extreme rainfall across the subtropics. The SADA thus provides a long-term context for observed hydroclimatic changes and for 21st-century Intergovernmental Panel on Climate Change (IPCC) projections that suggest SA will experience more frequent/severe droughts and rainfall events as a consequence of increasing greenhouse gas emissions
    • 

    corecore