
G-CORE
A Core for Future GraphQuery Languages

Designed by the LDBC GraphQuery Language Task Force∗

Renzo Angles
Universidad de Talca

Marcelo Arenas
PUC Chile

Pablo Barceló
DCC, Universidad de Chile

Peter Boncz
CWI, Amsterdam

George Fletcher
Technische Universiteit Eindhoven

Claudio Gutierrez
DCC, Universidad de Chile

Tobias Lindaaker
Neo4j

Marcus Paradies†
DLR

Stefan Plantikow
Neo4j

Juan Sequeda
Capsenta

Oskar van Rest
Oracle

Hannes Voigt
Technische Universität Dresden

ABSTRACT
We report on a community effort between industry and academia to
shape the future of graph query languages. We argue that existing
graph database management systems should consider supporting
a query language with two key characteristics. First, it should be
composable, meaning, that graphs are the input and the output of
queries. Second, the graph query language should treat paths as
first-class citizens. Our result is G-CORE, a powerful graph query
language design that fulfills these goals, and strikes a careful balance
between path query expressivity and evaluation complexity.

CCS CONCEPTS
• Information systems → Graph-based database models;
Query languages for non-relational engines; • Theory of
computation → Database query languages (principles);

KEYWORDS
Graph databases; graph data models; graph query languages

PREAMBLE
G-CORE is a design by the LDBCGraphQuery Language Task Force,
consisting of members from industry and academia, intending to
bring the best of both worlds to graph practitioners.
∗This paper is the culmination of 2.5 years of intensive discussion between the LDBC
Graph Query Language Task Force and members of industry and academia. We thank
the following organizations who participated in this effort: Capsenta, HP, Huawei,
IBM, Neo4j, Oracle, SAP and Sparsity. We also thank the following people for their
participation: Alex Averbuch, Hassan Chafi, Irini Fundulaki, Alastair Green, Josep
Lluis Larriba Pey, Jan Michels, Raquel Pau, Arnau Prat, Tomer Sagi and Yinglong Xia.
†Work performed while at SAP SE.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3190654

LDBC is not a standards body and rather than proposing a new
standard, we hope that the design and features of G-COREwill guide
the evolution of both existing and future graph query languages,
towards making them more useful, powerful and expressive.

1 INTRODUCTION
In the last decade there has been increased interest in graph data
management. In industry, numerous systems that store and query
or analyze such data have been developed. In academia, manifold
functionalities for graph databases have been proposed, studied
and experimented with.

Graphs are the ultimate abstraction for many real world pro-
cesses and today the computer infrastructure exists to collect, store
and handle them as such. There are several models for representing
graphs. Among the most popular is the property graph data model,
which is a directed graph with labels on both nodes and edges, as
well as ⟨property,value⟩ pairs associated with both. It has gained
adoption with systems such as AgensGraph [4], Amazon Nep-
tune [5], ArangoDB [11], Blazegraph [14], CosmosDB [26], DataS-
tax Enterprise Graph [16], HANA Graph [38], JanusGraph [23],
Neo4j [27], Oracle PGX [39], OrientDB [31], Sparksee [40], Star-
dog [41], TigerGraph [42], Titan [43], etc. These systems have their
own storage models, functionalities, libraries and APIs and many
have query languages. This wide range of systems and functionali-
ties poses important interoperability challenges to the graph data-
base industry. In order for the graph database industry to cooperate,
community efforts such as Apache Tinkerpop, openCypher[2] and
the Linked Data Benchmark Council (LDBC) are providing vendor
agnostic graph frameworks, query languages and benchmarks.

LDBCwas founded by academia and industry in 2012 [9] in order
to establish standard benchmarks for such new graph data man-
agement systems. LDBC has since developed a number of graph
data management benchmarks [18, 22, 24] to contribute to more
objective comparison among systems, informing prospective users
of some of the strong- and weak-points of the various systems be-
fore even doing a Proof-Of-Concept study, while providing system
engineers and architects clear targets for performance testing and

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301640985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3183713.3190654

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Angles et al.

Application Fields Used Features
healthcare / pharma 14 graph reachability 36
publishing 10 graph construction 34
finance / insurance 6 pattern matching 32
cultural heritage 6 shortest path search 19
e-commerce 5 graph clustering 14
social media 4
telecommunications 4

Figure 1: Graph database usage characteristics derived from
the use-case presentations in LDBC TUC Meetings 2012-
2017 (source: https://github.com/ldbc/tuc_presentations).
improvement. LDBC regularly organizes Technical User Commu-
nity (TUC) meetings, where not only members report on progress
of LDBC task forces but also gather requirements and feedback
from data practitioners, who are also present. There have been over
40 graph use-case presentations by data practitioners in these TUC
meetings, who often are users of the graph data management soft-
ware of LDBC members, such as IBM, Neo4j, Ontotext, Oracle and
SAP. The topics and contents of these collected TUC presentations
show that graph databases are being adopted over a wide range of
application fields, as summarized in Figure 1. This further shows
that the desired graph query language features are graph pattern
matching (e.g., identification of communities in social networks),
graph reachability (e.g., fraud detection in financial transactions
or insurance), weighted path finding (e.g., route optimization in
logistics, or bottleneck detection in telecommunications), graph
construction (e.g., data integration in Bioinformatics or specialized
publishing domains such as legal) and graph clustering (e.g., on
social networks for customer relationship management).

1.1 Three Main Challenges
The following issues are observed about existing graph query lan-
guages. These observations are based on the LDBC TUC use-case
analysis and feedback from industry practitioners:
Composability. The ability to plug and play is an essential step
in standardization. Having the ability to plug outputs and inputs
in a query language incentivizes its adoption (modularity, interop-
erability); simplify abstractions, users do not have to think about
multiple data models during the query process; and increases its
productivity, by facilitating reuse and decomposition of queries.
Current query languages do not provide full composability because
they output tables of values, nodes or edges.
Paths as first-class citizens. The notion of Path is fundamental
for graph databases, because it introduces an intermediate abstrac-
tion level that allows to represents how elements in a graph are
related. The facilities provided by a graph query language to manip-
ulate paths (i.e. describe, search, filter, count, annotate, return, etc.)
increase the expressivity of the language. Particularly, the ability
to return paths enables the user to post-process paths within the
query language rather that in an ad-hoc manner [17].
Capture the core of available languages. Both the desirability
of a standard query language and the difficulty of achieving this, is
well-established. This is particularly true for graph data languages
due to the diversity of models and the rich properties of the graph
model. This motivates our approach to take the successful function-
alities of current languages as a base from where to develop the
next generation of languages.

1.2 Contributions
Since the lack of a common graph query language kept coming up
in LDBC benchmark discussions, it was decided in 2014 to create a
task force to work on a common direction for property graph query
languages. The authors are members of this task-force.

This paper presents G-CORE, a closed query language on Prop-
erty Graphs. It is a coherent, comprehensive and consistent inte-
gration of industry desiderata and the leading functionalities found
in industry practices and theoretical research.
The paper presents the following contributions:
Path Property Graph model. Because users regard path-finding
an important feature, paths are outputs of certain G-CORE queries.
The fact that G-CORE must be closed, implies that paths must be
part of the graph data model. This leads to a principled change of the
data model: it extends property graphs with paths. That is, in a graph,
there is also a (possibly empty) collection of paths; where a path
is a concatenation of existing, adjacent, edges. Further, given that
nodes, edges and paths are all first-class citizens, paths have identity
and can also have labels and ⟨property,value⟩ pairs associated with
them. This extended property graph model, called the Path Property
Graph model, is backwards-compatible with the property graph
model. Not only is this extension necessary to support both path-
finding and compositionality, but it enables G-CORE to express
queries on paths (e.g. match, filter on, join on and group on paths),
which significantly extends its expressive power.
Syntax and Semantics of G-CORE. A key contribution is the
formal definition of G-CORE. This formal definition prevents any
ambiguity about the functionality of the language, thus enabling
the development of correct implementations. In particular, an open
source grammar for G-CORE is available1.
Complexity results. To ensure that the query language is prac-
tically usable on large data, the design of G-CORE was built on
previous complexity results. Features were carefully restricted in
suchways that G-CORE is tractable in data complexity [45], i.e., each
query in the language can be evaluated efficiently. Thus, G-CORE
provides the most powerful path query functionalities proposed
so far, while carefully avoiding the existence of intractable queries
(which is a minimum requirement for any practical query language).
Organization of the paper. This paper first defines the Extended
Property Graph model in Section 2. Then it explains G-CORE in
Section 3 via a guided tour, using examples on the LDBC Social Net-
work Benchmark dataset [18], which demonstrate its main features.
We summarize our formal contributions, comprising syntax, seman-
tics and complexity analysis of G-CORE in Section 4; further details
on these are found in the technical report [7]. In Section 5, we show
how G-CORE is extended to handle tabular data. We discuss related
work in Section 6, and conclude in Section 7.

2 PATH PROPERTY GRAPHS
We first define the data model of G-CORE, which is an extension
of the Property Graph data model [8, 27, 28, 36, 46]. We call this
model the Path Property Graph model, or PPG model for short. Let
L be an infinite set of label names for nodes, edges and paths, K
an infinite set of property names, and V an infinite set of literals
1https://github.com/ldbc/ldbc_gcore_parser

https://github.com/ldbc/ldbc_gcore_parser

G-CORE SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Figure 2: A small social network. A Path Property Graph
(PPG) is a Property Graph that can have “Stored Paths”.

(actual values such as integer and real numbers, strings, dates, truth
values ⊥ and ⊤, that represent true and false, respectively, etc.).
Moreover, assume that null is a reserved word not occurring in
L ∪ K ∪ V. Finally, given a set X , let FSET(X) denote the set of all
finite subsets of X , and FLIST(X) denote the set of all finite lists of
elements from X .

Definition 2.1. A PPG is a tuple G = (N ,E, P , ρ,δ , λ,σ), where:
(1) N is a finite set of node identifiers, E is a finite set of edge

identifiers and P is a finite set of path identifiers, where N ,
E and P are pairwise disjoint.

(2) ρ : E → (N × N) is a total function.
(3) δ : P → FLIST(N ∪ E) is a total function such that for

everyp ∈ P , it holds that δ (p) = [a1, e1,a2, . . . ,an , en ,an+1],
where: (i) n ≥ 0, (ii) ej ∈ E for every j ∈ {1, . . . ,n}, and
(iii) ρ (ej) = (aj ,aj+1) or ρ (ej) = (aj+1,aj) for every j ∈
{1, . . . ,n}

(4) λ : (N ∪ E ∪ P) → FSET(L) is a total function.
(5) σ : (N ∪ E ∪ P) ×K→ FSET(V) ∪ {null} is a total function

such that: (i) σ (x ,k) is either a nonempty subset of V or the
reserved word null, for every (x ,k) ∈ (N ∪ E ∪ P) ×K; and
(ii) there exists a finite set of tuples (y, ℓ) ∈ (N ∪ E ∪ P) ×K
such that σ (y, ℓ) , null.

Given an edge e in a PPGG , if ρ (e) = (a,b), then a is the starting
node of e and b is the ending node of e . The function ρ allows us
to have several edges between the same pairs of nodes. Function δ
assigns to each path identifier p ∈ P an actual path inG: this is a list
[a1, e1,a2, . . . ,an , en ,an+1] satisfying condition (3) in Definition
2.1. Function λ is used to specify the set of labels of each node,
edge, and path, while function σ is used to specify the values of
a property for every node, edge, and path. To be precise, if x ∈
(N ∪ E ∪ P), k ∈ K is a property name and σ (x ,k) is a nonempty
subset of V, then σ (x ,k) is the set of values of the property k for
the identifier x . Otherwise, σ (x ,k) = null, and property k is not
defined for identifier x . Notice that although K is an infinite set
of property names, in G only a finite number of properties are

Figure 3: Social Network Benchmark schema (simplified).

assigned actual values as we assume that there exists a finite set of
tuples (y, ℓ) ∈ (N ∪ E ∪ P) × K such that σ (y, ℓ) , null.

Example 2.2. As a simple example of a PPG, consider the small
social network graph given in Figure 2. Here we have

N = {101, 102, 103, 104, 105, 106},
E = {201, 202, 203, 204, 205, 206, 207}, and
P = {301}

as node, edge, and path identifiers, respectively;

ρ = {201 7→ (102, 101), . . . , 207 7→ (105, 103)} and
δ = {301 7→ [105, 207, 103, 202, 102]}

as edge and path assignments, respectively; and,

λ = {101 7→ {Tag}, 102 7→ {Person,Manager}, . . . ,
201 7→ {hasInterest}, . . . , 301 7→ {toWagner}}

and
σ = {(101, name) 7→

{
Wagner

}
, . . . ,

(205, since) 7→ {1/12/2014} , . . . , (301, trust) 7→ {0.95}}

as label and property value assignments, respectively. Notice that
σ (205, name) = null and σ (301, since) = null, as property name
is not defined for the edge with identifier 205, while property since
is not defined for the path with identifier 301.

Paths. It is worth remarking that paths are included as a first-class
citizens in this data model (at the level of nodes and edges). In
particular, paths can have labels and properties, where the latter
can be used to describe built-in properties like the length of the
path. In our example above, the path with identifier 301 has label
“toWagner” and value 0.95 on property “trust”.

For convenience, we use nodes(p) and edges(p) to denote the
list of all nodes and edges of a path bound to a variable p, respec-
tively. Formally, if δ (p) = [a1, e1,a2, . . . , en ,an+1] then nodes(p) =
[a1, . . . ,an+1] and edges(p) = [e1, . . . , en]. In our example above,
nodes(301) = [105, 103, 102] and edges(301) = [207, 202].

3 A GUIDED TOUR OF G-CORE
We will now demonstrate and explain the main features of the
G-CORE language. The concrete setting is the LDBC Social Network
Benchmark (SNB), as illustrated in the simple social network from
Figure 2, whose (simplified) schema is depicted in Figure 3. Figure 4
depicts the toy instance (which we refer to as social_graph) on which
our example queries are evaluated. The use-cases in these examples
are data integration and expert finding in a social network.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Angles et al.

Always returning a graph. Let us start with what is possibly one
of the simplest G-CORE queries:
1 CONSTRUCT (n)

2 MATCH (n:Person)

3 ON social_graph

4 WHERE n.employer = 'Acme'

In G-CORE every query returns a graph, as embodied by the
CONSTRUCT clause which is at the start of every query body. This
example query constructs a new graph with no edges and only
nodes, namely those persons who work at Acme – all the labels and
properties that these person nodes had in social_graph are preserved
in the returned result graph.
Match and Filter. The MATCH..ON..WHERE clause matches one or more
(comma separated) graph patterns on a named graph, using the
homomorphic semantics [8].

Systems may omit ON if there is a default graph – let us assume
in the sequel that social_graph is the default graph.2 Parenthesis
demarcate a node, where n is a variable bound to the identity of a
node, :Person a label, and n.employer a property. The G-CORE builds
on the ASCII-art syntax from Cypher [19] and the regular path
expression syntax from PGQL [44], which has proven intuitive,
effective and popular among property graph database users.

The previous example contains a WHERE filter whose seman-
tics is defined by considering the fact that a property of a node,
edge or path can have several values. More precisely, given that
n.employer can be a set of values, the semantics of the condition
n.employer = 'Acme' is defined by first interpreting 'Acme' as the
singleton set {'Acme'}, and then checking whether n.employer and
{'Acme'} are the same set.3 Thus, the condition n.employer = 'Acme'

is used to check whether employee n works at Acme, and only in
this company. Notice that if n.employer is equal to null, then the
condition n.employer = 'Acme' does not hold. Moreover, if we want
to retrieve the list of people who work at Acme, but who can also
work at other companies, then we have to use the operator IN to
check whether a value is an element of a set: 'Acme' IN n.employer.
Multi-Graph Queries and Joins. A more useful query would be
a simple data integration query, where we might have loaded (un-
connected) company nodes into a temporary graph company_graph,
but now want to create a unified graph where employees and com-
panies are connected with an edge labeled worksAt. Let us assume
that company_graph contains nodes for Acme, HAL, CWI and MIT.
As an aside, the real SNB dataset already contains such Company
nodes with :worksAt edges to the employees (which in reality do not
have an employer property).

The below query has a MATCH clause with two graph patterns,
matching these on two different input graphs. Graph patterns that
do not have variables in common lead to the Cartesian product of
variable bindings, but this query also has a WHERE clause that turns
it into an equi-join:
5 CONSTRUCT (c) <-[:worksAt]-(n)

6 MATCH (c:Company) ON company_graph ,

7 (n:Person) ON social_graph

2By allowing a subquery enclosed in parentheses after the ON as an alternative to a
graph identifier, G-CORE is a compositional language. With identical purpose it allows
to use an identifier that denotes a VIEW – as will be demonstrated later.
3In general, we omit curly braces in the case of a singleton set, so we simply write
'Acme' instead of {'Acme'}.

Figure 4: Initial graph database (social_graph). Note that the
knows edges are drawn bi-directionally – this means there are
two edges: one in each direction.

8 WHERE c.name = n.employer

9 UNION social_graph

The UNION operator takes its intuitive meaning, and will be
touched upon later when we talk about node and edge identity.

Generally speaking, MATCH produces a set of bindings which al-
ternatively may be viewed as a table having a column for each
variable and one row for each binding. Bindings typically contain
node, edge and path identities, whose shape is opaque, but we use
intuitive names prefixed # here:

c n
#Acme #Alice
#HAL #Celine
#Acme #John

Dealing with Multi-Valued properties. In the previous query
there is the complication that n.employer is multi-valued for Frank
Gold: he works for both MIT and CWI. Therefore, his person node
fails to match with both companies. To explain, if WHERE c.name =

n.employer were omitted, the query would be a Cartesian product,
and would yield the below bindings for variables c and n, where we
also indicate the values of expressions c.name and n.employer:

c.name c n n.employer

"MIT" #MIT #Peter null
"CWI" #CWI #Peter null
"Acme" #Acme #Peter null
"HAL" #HAL #Peter null
"MIT" #MIT #Frank {"CWI", "MIT"}
"CWI" #CWI #Frank {"CWI", "MIT"}
"Acme" #Acme #Frank {"CWI", "MIT"}
"HAL" #HAL #Frank {"CWI", "MIT"}
"MIT" #MIT #Alice "Acme"
"CWI" #CWI #Alice "Acme"
"Acme" #Acme #Alice "Acme"
"HAL" #HAL #Alice "Acme"
"MIT" #MIT #Celine "HAL"
"CWI" #CWI #Celine "HAL"
"Acme" #Acme #Celine "HAL"
"HAL" #HAL #Celine "HAL"
"MIT" #MIT #John "Acme"
"CWI" #CWI #John "Acme"
"Acme" #Acme #John "Acme"
"HAL" #HAL #John "Acme"

Notice that according to the definition of our data model, the value
of c.name is a set or null. But as mentioned before, in the case

G-CORE SIGMOD’18, June 10–15, 2018, Houston, TX, USA

c.name is a singleton set, we omit curly braces, so we simply write
"MIT" instead of {"MIT"}. In the table above, the rows in bold would be
the ones that earlier led to bindings surviving the join. Essentially,
"MIT"={"CWI","MIT"} and "CWI"={"CWI","MIT"} evaluate to FALSE, as the
sets {"MIT"} and {"CWI"} are different from the set {"CWI","MIT"}.

Notice that Peter is unemployed, so his n.employer value is null.
More precisely, its Person node does not have an employer prop-
erty at all. The absence of a property can be tested by using the
Boolean built-in function exists; in our example, this condition
would be NOT exists(n.employer). G-CORE provides CASE expressions
to coalesce such missing data into other values.

One way to resolve the failing join for Frank, would be to use IN

instead of =, so the comparisons mentioned earlier resolve to TRUE:
10 CONSTRUCT (c) <-[:worksAt]-(n)

11 MATCH (c:Company) ON company_graph ,

12 (n:Person) ON social_graph

13 WHERE c.name IN n.employer

14 UNION social_graph

Notice that the IN operator can be used when c.name is a singleton
set, as in this case it is natural to ask whether the value in c.name is an
element of n.employer. If we need to compare c.name with n.employer

as sets, then the operator SUBSET can be used.
Another way to deal with this in G-CORE is to bind a variable e

to the employer property, which unrolls (or “explodes”) multi-valued
properties into individual bindings:
15 CONSTRUCT (c) <-[:worksAt]-(n)

16 MATCH (c:Company) ON company_graph ,

17 (n:Person {employer=e}) ON social_graph

18 WHERE c.name = e

19 UNION social_graph

Inside the MATCH expression that binds a node, curly braces can
be used to bind variables to property values. The set of bindings
for this MATCH (which includes the join) now has three variables and
the following bindings, where #Frank’s two employers have been
unrolled into individual bindings:

c n e
#MIT #Frank "MIT"
#CWI #Frank "CWI"
#Acme #Alice "Acme"
#HAL #Celine "HAL"
#Acme #John "Acme"

The “exploding” uses outerjoin semantics: absence of a property
leads to a single null binding. Therefore a null binding of e is gen-
erated for #Peter, who has no employer. That binding is not in the
above table because it does not qualify the WHERE condition c.name = e

for any company: not only is there no company with null as name
(i.e., without a name), but equi-comparisons with null yield false

anyway, like in SQL.
Construction that respects identities. The CONSTRUCT operation
fills a graph pattern (used as template) for each binding in the set
of bindings produced by the MATCH clause. Edges are denoted with
square brackets, and can be pointed towards either direction; in this
case there is no edge variable, but there is an edge label :worksAt.
Note, to be precise, that CONSTRUCT by default groups bindings when
creating elements. Nodes are grouped by node identity, and edges
by the combination of source and destination node. While five new
edges are created here, they are between four existing persons and
four existing companies due to this grouping. For instance, the

person #Frank, who works for both MIT and CWI, gets two :worksAt

edges, to respectively company #MIT and company #CWI.
In the last line of this example query, we UNION-ed these new

edges with the original graph, resulting in an enriched graph: the
original graph plus five edges. The “full graph” query operators
like union and difference are defined in terms of node, edge and
path identities. These identities are taken from the input graph(s)
of the query. G-CORE is a query language, not an update language.
Even though CONSTRUCT allows with SET prop:=val and REMOVE prop to
change properties and values (a later example will demonstrate
SET), this does not modify the graph database, it just changes the
result of that particular query. The practice of returning a graph
that shares (parts of) nodes, edges and paths with its inputs, using
this concept of identity, provides opportunities for systems to share
memory and storage resources between query inputs and outputs.

A shorthand form for the union operation is to include a graph
name directly in the comma separated list of CONSTRUCT patterns, as
depicted in the next query:
20 CONSTRUCT social_graph ,

21 (x GROUP e :Company {name:=e}) <-[y:worksAt]-(n)

22 WHEN exists(e)
23 MATCH (n:Person {employer=e})

Graph Aggregation. The above query demonstrates graph aggre-
gation. Supposing there would not have been any company nodes
in the graph, we might also have created them with this excerpt:

CONSTRUCT (x:Company{name:=n.employer})<-[y:worksAt]-(n)

However, this unbound destination node x would create a company
node for each binding4. This is not what we want: we want only
one company per unique name. Graph aggregation therefore allows
an explicit GROUP clause in each graph pattern element. Thus, in the
above querywith GROUP e, we create only one company node for each
unique value of e in the binding set. Here the curly brace notation
is used inside CONSTRUCT to instantiate the Company.name property in
the newly created nodes.

Note that given the outerjoin semantics of property value bind-
ing (employer=e), we would now also create a company for the null

binding of e. Therefore we used the WHEN clause that each CONSTRUCT

pattern can have, that restricts the bindings used for construction
with a boolean predicate. This filters out the null bindings of e.

Our graph aggregation example query yields the same binding
table for variables n and e as in the previous example. The CONSTRUCT

for node expression (n) groups by node identity so instantiates the
nodes with identity #Frank, #Alice, #Celine and #John in the query result.
These nodes were already part of social_graph, so given that the
CONSTRUCT is UNION-ed with that, no extra nodes result.

For the (x GROUP e : ...) node expression, CONSTRUCT groups by e

into bindings "CWI", "MIT", "Acme", and "HAL" and because x is unbound,
it will create four new nodes with, say, identities #CWI’, #MIT’, #Acme’

and #HAL’. For the edges to be constructed, G-CORE performs by
default grouping of the bindings on the combination of source and
destination node, and this results in again five new edges.

When using bound variables in a CONSTRUCT, they must be of the
right sort: it would be illegal to use n (a node) in the place of y

(an edge) here. In case an edge variable (here: y) would have been

4In addition, it would create a company with the name property with the values
{"CWI", "MIT"}.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Angles et al.

bound (in the MATCH), CONSTRUCT imposes the restriction that its node
variables must also be bound, and be bound to exactly its source and
destination nodes, because changing the source and destination of
an edge violates its identity. However, it can be useful to bind edges
in MATCH and use these to construct edges with a new identity, which
are copies of these existing edges in terms of labels and property-
values. For this purpose, G-CORE supports the -[=y]- syntax which
makes a copy of the bound y edges (as well as the (=n) syntax for
nodes). Then, the above restriction does not apply. With the copy
syntax, it is even possible to copy all labels and properties of a node
to an edge (or a path) and vice versa.

In this example, y was unbound and could have been omitted.
In the preceding examples, they were in fact omitted (we just used
[:worksat]). Unbound variables in a CONSTRUCT are useful if they in
multiple construct patterns, in order to ensure that the same, new,
identities will be used (i.e., to connect newly created graph elements,
rather than generate independent nodes and edges).
Storing Paths with @p. G-CORE is unique in its treatment of
paths, namely as first-class citizens. The below query demonstrates
finding the three shortest paths from John Doe towards each other
person who lives at his location, reachable over knows edges, using
Kleene star notation <:knows*>:
24 CONSTRUCT (n)-/@p:localPeople{distance :=c}/->(m)

25 MATCH (n) -/3 SHORTEST p<:knows*> COST c/->(m)

26 WHERE (n:Person) AND (m:Person)

27 AND n.firstName = 'John' AND n.lastName = 'Doe'

28 AND (n) -[: isLocatedIn]->() <-[:isLocatedIn]-(m)

In G-CORE, paths are demarcated with slashes -/ /-. In the above
example p <:knows*> binds the shortest path between the single node
n (i.e. John Doe) and every possible person m, under the restriction
that this target person lives in the same place. By writing e.g., -/3
SHORTEST p <:knows*>/-> we obtain multiple shortest paths (at most
3, in this case) for every source–destination combination; if the
number 3 would be omitted, it would default to 1. In case there
are multiple shortest paths with equal cost between two nodes,
G-CORE delivers just any one of them. By writing p <:knows*> COST

c/-> we bind the shortest path cost to variable c. By default, the
cost of a path is its hop-count (length). We will define weighted
shortest paths later. If we would not be interested in the length,
COST c could be omitted.

In CONSTRUCT (n)-/@p:localPeople{distance:=c}/->(m), we see the
bound path variable @p. The @ prefix indicates a stored path, that
is, this query is delivering a graph with paths. Each path is stored
attaching the label :localPeople, and its cost as property distance.

The graph returned by this query – which lacks a UNION with the
original social_graph – is a projection of all nodes and edges involved
in these stored paths. We omitted a figure of this for brevity.
Reachability and All Paths. In a similar query where we just
return m, and do not store paths, the <:knows*> path expression se-
mantics is a reachability test:
29 CONSTRUCT (m)

30 MATCH (n:Person) -/<:knows*>/->(m:Person)

31 WHERE n.firstName = 'John' AND n.lastName = 'Doe'

32 AND (n) -[: isLocatedIn]->() <-[:isLocatedIn]-(m)

In this case we use -/<:knows*>/-> without the SHORTEST keyword.
Using ALL instead of SHORTEST, which is asking for all paths, is not
allowed if a path variable is bound to it and used somewhere, as

Figure 5: Graph view social_graph1, which adds nr_message prop-
erties to the original social_graph (social_graph2 is social_graph1

plus the Stored Paths in the grey box).

this would be intractable or impossible due to an infinite amount
of results. However, G-CORE can support it in the case where the
path variable is only used to return a graph projection of all paths:
33 CONSTRUCT (n)-/p/->(m)

34 MATCH (n:Person)-/ALL p<:knows*>/->(m:Person)

35 WHERE n.firstName = 'John' AND n.lastName = 'Doe'

36 AND (n) -[: isLocatedIn]->() <-[:isLocatedIn]-(m)

The method [12] shows how the materialization of all paths can
be avoided by summarizing these paths in a graph projection; hence
this functionality is tractable.
Existential Subqueries. In the SNB graph, isLocatedIn is not a
simple string attribute, but an edge to a city, and the three previous
query examples used pattern matching directly in the WHERE clause:
(n)-[:isLocatedIn]->()<-[:isLocatedIn]-(m). G-CORE allows this and
uses implicit existential quantification, which here is equivalent to:
37 WHERE EXISTS (

38 CONSTRUCT ()

39 MATCH (n) -[: isLocatedIn]->() <-[:isLocatedIn]-(m))

This constructs one new node (unbound anonymous node vari-
able ()) for each match of n and m coinciding in the city where they
are located – where that city is represented by a () again. When-
ever such a subquery evaluates to the empty graph, the automatic
existential semantics of WHERE evaluates to FALSE; otherwise to TRUE.
Views and Optionals. The fact that G-CORE is closed on the PPG
data model means that subqueries and views are possible. In the
following example we create such a view:
40 GRAPH VIEW social_graph1 AS (

41 CONSTRUCT social_graph ,

42 (n)-[e]->(m) SET e.nr_messages := COUNT (*)
43 MATCH (n)-[e:knows]->(m)

44 WHERE (n:Person) AND (m:Person)

45 OPTIONAL (n)<-[c1]-(msg1:Post|Comment),

46 (msg1) -[:reply_of]-(msg2),

47 (msg2:Post|Comment)-[c2]->(m)

48 WHERE (c1:has_creator) AND (c2:has_creator))

G-CORE SIGMOD’18, June 10–15, 2018, Houston, TX, USA

The result of this graph view can be seen in Figure 5. To each
:knows edge, this view adds a nr_messages property, using the SET ..

:= sub-clause. This sub-clause of CONSTRUCT can be used to modify
properties of nodes, edges and paths that are being constructed. In
G-CORE objects are mutable, i.e. not only newly constructed nodes,
edges and paths can be modified that way but also ones bound
by the MATCH, such as edge e in this example. In this example, the
particular nr_messages property contains the amount of messages
that the two persons n and m have actually exchanged, and is a
reliable indicator of the intensity of the bond between two persons.

The edge construction (n)-[e]->(m) adds nothing new, but as
described before, performs implicit graph aggregation, where bind-
ings are grouped on n,m,e, and COUNT(*) evaluates to the amount of
occurrences of each combination.

This example also demonstrates OPTIONAL matches, such that peo-
ple who know each other but never exchanged a message still get
a property e.nr_messages=0. All patterns separated by comma in an
OPTIONAL block must match. Technically, the set of bindings from
the main MATCH is left outer-joined with the one coming out of the
OPTIONAL block, and there may be more than one OPTIONAL blocks,
in which case this repeats. Each OPTIONAL block can have its own
WHERE; we demonstrate this here by moving some label tests to WHERE

clauses (on :Person and :has_creator). This query also demonstrates
the use of disjunctive label tests (msg1:Post|Comment).

If a query contains multiple OPTIONAL blocks, they have to be
evaluated from the top to the bottom. For example, to evaluate the
following pattern:
49 MATCH (n:Person)

50 OPTIONAL (n) -[:worksAt]->(c)

51 OPTIONAL (n) -[:livesIn]->(a)

we need to perform the following steps: evaluate (n:Person) to gen-
erate a binding set T1, evaluate (n)-[:worksAt]->(c) to generate a
binding setT2, compute the left-outer join ofT1 withT2 to generate
a binding set T3, evaluate (n)-[:livesIn]->(a) to generate a binding
set T4, and compute the left-outer join of T3 with T4 to generate
a binding set T that is the result of evaluating the entire pattern.
Obviously, in this case the order of evaluation is not relevant, and
the previous pattern is equivalent to:
52 MATCH (n:Person)

53 OPTIONAL (n) -[:livesIn]->(a)

54 OPTIONAL (n) -[:worksAt]->(c)

However, the order of evaluation can be relevant if the optional
blocks of a pattern shared some variables that are not mentioned
in the first pattern. For example, in the following expression the
variable a is mentioned in the optional blocks but not in the first
pattern (n:Person):
55 MATCH (n:Person)

56 OPTIONAL (n) -[:worksAt]->(a)

57 OPTIONAL (n) -[:livesIn]->(a)

Such a pattern is allowed in G-CORE, so the default way to evaluate
a query containing multiple OPTIONAL blocks is from the top to the
bottom. However, by imposing the simple and natural syntactic re-
striction that variables shared by optional blocks have to be present
in their enclosing pattern, one can ensure that the semantics of a
pattern with multiple OPTIONAL blocks is independent of the evalu-
ation order [32]. Thus, a system implementing G-CORE can first
check whether this condition is satisfied by a pattern with multiple

OPTIONAL blocks, and if this is the case then it can use any order
when evaluating these blocks; in particular, the system can decide
which order to use based on estimations of the execution times of
the different alternatives.
Weighted Shortest Paths. The finale of this section describes an
example of expert finding: let us suppose that John Doe wants to go
to a Wagner Opera, but none of his friends likes Wagner. He thus
wants to know which friend to ask to introduce him to a true Wag-
ner lover who lives in his city (or to someone who can recursively
introduce him). To optimize his chances for success, he prefers to
try “friends” who actually communicate with each other. Therefore
we look for the weighted shortest path over the wKnows (“weighted
knows”) path pattern towards people who like Wagner, where the
weight is the inverse of the number of messages exchanged: the
more messages exchanged, the lower the cost (though we add one
to the divisor to avoid overflow). For each Wagner lover, we want a
shortest path.

In G-CORE, weighted shortest paths are specified over basic
path patterns, defined by a PATH .. WHERE .. COST clause, because this
allows to specify a cost value for each traversed path pattern. The
specified cost must be numerical, and larger than zero (otherwise a
run-time error will be raised), where the full cost of a path (to be
minimized) is the sum of the costs of all path segments. If the COST

is omitted, it defaults to 1 (hop count).
58 GRAPH VIEW social_graph2 AS (

59 PATH wKnows = (x)-[e:knows]->(y)

60 WHERE NOT 'Acme' IN y.employer

61 COST 1 / (1 + e.nr_messages)

62 CONSTRUCT social_graph1 , (n)-/@p:toWagner/->(m)

63 MATCH (n:Person)-/p<~ wKnows*>/->(m:Person)

64 ON social_graph1

65 WHERE (m) -[: hasInterest]->(:Tag {name='Wagner '})

66 AND (n) -[: isLocatedIn]->() <-[:isLocatedIn]-(m)

67 AND n.firstName = 'John' AND n.lastName = 'Doe')

The result of this graph view (social_graph2) was already depicted
in Figure 5: it adds to social_graph1 two stored paths. Apart from
GRAPH VIEW name AS (query), and similar to CREATE VIEW in SQL
which introduces a global name for a query expression, G-CORE
also supports a GRAPH name AS (query1) query2 clause which, similar to
WITH in SQL, introduces a name that is only visible inside query2.
Powerful Path Patterns. Basic PATH patterns are a powerful build-
ing block that allow complex path expressions as concatenations
of these patterns [44] using a Kleene star, yet still allow for fast
Dijkstra-based evaluation. In G-CORE, these path patterns can even
be non-linear shapes, as PATH can take a comma-separated list of
multiple graph patterns. But, the path pattern must contain a start
and end node (a path segment), which is taken to be the first and
last node in its first graph pattern. This ensures path patterns can
be stitched together to form paths – a path pattern always contains
a path segment between its start and end nodes. These basic path
patterns can also contain WHERE conditions, without restrictions on
their complexity. As John Doe wants his preference for Wagner
to remain unknown at his work, we exclude employees of Acme
from occurring on the path.5 The result of this query is a view

5Note that non-linear path patterns, such as PATH (a)-[]-(b),(b)--(c) add power
over linear patterns with existential filters: PATH (a)-[]-(b) WHERE (b)--(c), be-
cause the WHERE condition cannot bind variables. The non-linear pattern also binds
variable c, so it can be used for instance in a COST expression in G-CORE.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Angles et al.

Matching
Matching all patterns (Homomorphism) *
Matching literal values 18, 23
Matching k shortest paths 25
Matching all shortest paths 30
Matching weighted shortest paths 61
(multi-segment) optional matching 45

Querying
Querying multiple graphs 6
Queries on paths 70
Filtering matches 4,8,13,18,27,31,35,60,65,72
Filtering path expressions 59
Value joins 8
Cartesian product 11
List membership 13

Subqueries
Set operations on graphs 8, 14, 19
Existential subqueries
- Implicit 28, 32, 36
- Explicit 37

Construction
Graph construction *
Graph aggregation 21
Graph projection 24
Graph views 40, 58
Property addition 42

Table 1: Overview of G-CORE features and their line occur-
rences in the example queries in Section 3.

social_graph2 in which all these shortest paths from John Doe to
Wagner lovers have been materialized (because of the use of @p in
(n)-/@p:toWagner/->(m)).

A unique capability of G-CORE is to query and analyze databases
of potentially many stored paths. We demonstrate this in the final
query, where we score John’s friends for their aptitude:
68 CONSTRUCT (n)-[e:wagnerFriend {score:=COUNT (*)}]->(m)
69 WHEN e.score > 0

70 MATCH (n:Person)-/@p:toWagner /->(), (m:Person)

71 ON social_graph2

72 WHERE m = nodes(p)[2]

For the :toWagner paths, we use nodes(p)[1] to look at the second
node in each path, i.e. a direct friend of John Doe. G-CORE starts
counting at 0 so nodes(my_path)[n] returns the n − 1 item from the
list returned by the function nodes(), which returns all nodes on a
path. For these direct friends we count how often they occur as the
start of :toWagner paths. These scores has been attached as a score

property to new :wagnerFriend edges. Since in the toy example there
are only two Wagner lovers and thus two shortest paths to them,
both via Peter, the result of this query is a single :wagnerFriend edge
between John and Peter with score 2.

4 FORMALIZING AND ANALYZING G-CORE
One of the main goals of this paper is to provide a formal definition
of the syntax and semantics of a graph query language including
the features shown in the previous sections. Formally, a G-CORE
query is defined by the following top-down grammar:

query ::= headClause fullGraphQuery

headClause ::= ε | pathClause headClause |
graphClause headClause

fullGraphQuery ::= basicGraphQuery |

(fullGraphQuery setOp fullGraphQuery)

setOp ::= Union | Intersect | Minus
basicGraphQuery ::= constructClause matchClause

Thus, a G-CORE query consists of a sequence of Path and Graph
clauses, followed by a full graph query, i.e., a combination of basic
graph queries under the set operations of union, intersection and
difference. A basic graph query consists of a single Construct
clause followed by one Match clause. We have seen examples of
all these features in Section 3.

We provide the full detailed formal definitions of the syntax and
semantics of G-CORE in the technical report [7]. The basic idea
of the language is, given a PPG G, to create a new PPG H using
the Construct clause. This is achieved, in turn, by applying an
intermediate step provided by the Match clause. The application of
such a clause creates a set of bindings Ω, based on a graph pattern
that is evaluated over G. The interaction between the Match and
the Construct clause is explained in more detail below:
• The result of evaluating the graph pattern φ that defines the
content of a Match clause over a PPGG always corresponds
to a set Ω of bindings, which is denoted by JφKG . The bind-
ings in Ω can then be filtered by using boolean conditions
specified in the Where clause.
• A Construct clauseψ then takes as input both the PPG G
and the set of bindings Ω, and produces a new PPGH , which
is denoted by Jψ KΩ,G . Note that G is also an input in the
evaluation ofψ , as the set of bindings Ω can make reference
to objects whose labels and properties are defined in G.

The role of the Path clause is to define complex path expressions,
as well as the cost associated with them, that can in turn be used
in graph patterns in the Match clause. In this way, it is possible to
define rich navigational patterns on graphs that capture expressive
query languages that have been studied in depth in the theoretical
community (e.g., the class of regular queries [35]).
Complexity analysis. The G-CORE query language has been care-
fully designed to ensure that G-CORE queries can be evaluated
efficiently in data complexity [45]. Formally, this means that for
each fixed G-CORE query q, the result JqKG of evaluating q over an
input PPG G can be computed in polynomial time. As extensively
discussed in the database literature, cf. [3], this is a minimum re-
quirement for any practical query language (as it ensures that no
intractable properties about the data need to be evaluated).

The main reasons that explain the tractability in data complexity
are given below. First of all, graph patterns correspond (essentially)
to conjunctions of atoms expressing that two nodes are linked by
a path satisfying a certain regular expression over the alphabet of
node and edge labels. The set Ω of all bindings of a fixed graph
pattern φ over the input PPG G can then be easily computed in
polynomial time: we simply look for all possible ways of replacing
node and edge variables in φ by node and edge identifiers in G,
respectively, and then for each path variable π representing a path
in G from node u to node v whose label must conform to a regular
expression r , we replace π by the shortest/cheapest path inG fromu
tov that satisfies r (if it exists). This can be done in polynomial time
by applying standard automata-theoretic techniques in conjunction
with Dijkstra-style algorithms. (Notice that the latter would not be

G-CORE SIGMOD’18, June 10–15, 2018, Houston, TX, USA

true if our semantics was based on simple paths; in fact, checking if
there is a simple path in a PPG whose label satisfies a fixed regular
expression is an NP-complete problem [25]).

Suppose, now, that we are given a fixed G-CORE query q that
corresponds to a sequence of clauses followed by a full graph query
q′. Each clause is defined by a graph pattern φ whose evaluation
corresponds to a binary relation over the nodes of the input PPGG .
By construction, the graph patternφ might mention binary patterns
which are defined in previous clauses. Therefore, it is possible to
iteratively evaluate in polynomial time all graph patternsφ1, . . . ,φk
that are mentioned in the clauses of q. Once this process is finished,
we proceed to evaluate q′ (which is defined in terms of the φi ’s).

By definition, q′ is a boolean combination of full graph queries
q1, . . . ,qm . It is thus sufficient to explain how to evaluate each
such a full graph query qj in polynomial time. We can assume by
construction that qj consists of a Construct clause applied over a
Match clause. We first explain how the set of bindings that satisfy
the Match clause can be computed in polynomial time. Since one
or more Optional clauses could be applied over the Match clause,
the semantics is based on the set Ω of maximal bindings for the
whole expression, i.e., those that satisfy the primary graph pattern
expressed in the Match clause, and as many atoms as possible
from the basic graph patterns that define the Optional clauses.
The computation of Ω can be carried out in polynomial time by
a straightforward extension of the aforementioned techniques for
efficiently evaluating basic graph patterns. Finally, filtering Ω in
accordance with the boolean conditions expressed in the Where
clause can easily be done in polynomial time (under the reasonable
assumption that such conditions can be evaluated efficiently). Recall
that a possible such a condition is Exists Q , for Q a subquery. We
then need to check whether the evaluation of Q over G yields an
empty graph. We inductively assume the existence of an efficient
algorithm for checking this.

Finally, the application of the Construct clause on top of G
and the set Ω of bindings generated by the Match clause can be
carried out in polynomial time. Intuitively, this is because the oper-
ations allowed in the Construct clause are defined by applying
some simple aggregation and grouping functions on top of bindings
generated by relational algebra operations.

Given that all evaluation steps of G-CORE have polynomial com-
plexity in data size, we conclude that G-CORE is tractable.

5 COMBINING GRAPHS AND TABLES
G-CORE is intentionally designed as a small language that provides
a kernel of graph matching and construction functionality. Practical
use of graphs, however, often requires interoperability with tabular
data. For that purpose, we foresee integration of G-CORE with
tabular querying. The formal semantics of G-CORE revolve around
creation (by MATCH) and consumption (by CONSTRUCT) of its central
concept, the binding table. This binding table also is the natural
and clean interface point with queries on tabular data.
Tabular data output. G-CORE could support the SELECT clause,
to be used in place of CONSTRUCT. The SELECT allows projecting ex-
pressions into a table. Precisely, SELECT is followed by one or many
comma-separated expressions, whose main task is to facilitate turn-
ing node, edge and path variables into literal values – typically by

accessing property values. The expressions follow the same syntax
and semantics as the expressions allowed in G-CORE’s SET clause.

Consider this example of a query that uses tabular projection:
73 SELECT m.lastName + ', ' + m.firstName AS friendName

74 MATCH (n:Person) -/<:knows*>/->(m:Person)

75 WHERE n.firstName = 'John' AND n.lastName = 'Doe'

76 AND (n) -[: isLocatedIn]->() <-[:isLocatedIn]-(m)

This query matches persons with the name “John Doe” together
with indirect friends that live in the same city and returns a single-
column table with the names of these friends.
Tabular data input. To operate on tabular data, G-CORE could
include a FROM <table> <id> clause similar to SQL, to be used in place
of the MATCH. The binding table resulting from this would have one
column by the name of the tuple variable <id> (or the table name
if it were omitted). Its contents would be row identities from that
table. The usable properties of these “row entities” would be all
columns of <table>.

As an example consider the following query:
77 CONSTRUCT
78 (cust GROUP o.custName :Customer {name:=o.custName }),

79 (prod GROUP o.prodCode :Product {code:=o.prodCode }),

80 (cust) -[:bought]->(prod)

81 FROM orders o

This will construct a new graph from an input table (or view) of cus-
tomer names custName and product codes prodCode by connecting
per-customer and per-product nodes as given by the table.
SQL+G-CORE. Taking this some steps further, we sketch how the
above two extensions could be building blocks for extending SQL
with G-CORE. Now, a SQL FROM clause may contain multiple table
expressions, hence it introduces multiple tuple variables; this would
lead to one column in the binding table for each such tuple variable,
in terms of G-CORE’s formal semantics of CONSTRUCT. Following SQL
semantics, these multiple tables (or SQL views or SQL subqueries)
are combined with Cartesian product, possibly filtered by INNER/

OUTER JOIN predicates in the FROM clause. The MATCH clause could then
also be employed in conjunction with the FROM clause (not only:
instead of). The final binding table is the Cartesian product between
the MATCH binding table and the FROM binding table, with the WHERE

clause still available to restrict the combinations.
The following “SQL+G-CORE” query performs data integration

between a graph and two tables, producing an enriched graph:
82 CONSTRUCT
83 (c GROUP c.custId :Customer {custId :=c.custId }),

84 (c) -[:bought {spent:=SUM(l.price)}]->(p)
85 WHEN COUNT(l.productId) > 0

86 FROM customer c LEFT OUTER JOIN
87 lineitem l USING (custId)

88 MATCH (p :Product) ON product_graph

89 WHERE p.productId = l.productId

Similarly, but not shown, the SQL GROUP BY and HAVING clauses can
be used to aggregate and filter the binding table prior to CONSTRUCT.

Thus, this possible extension of SQL with G-CORE would add
MATCH as an alternative way to create table expressions (each variable
bound in MATCH, be it a node, edge or path variable, introducing a
tuple variable), and CONSTRUCT as an alternative way to return a query
result (as a graph).

This concludes our sketch of possible integration of tabular
querying and G-CORE. The end result should be systems that can

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Angles et al.

query both graphs and tables and return either a graph or a table;
and thus achieve compositionality in both sorts of data.

At the time of this writing, the formal semantics of relational
integration has been left out of scope in [7].

6 DISCUSSION AND RELATEDWORK
Graph query languages have been extensively researched in the
past decades, and comprehensive surveys are available. Angles
and Gutierrez [10] surveyed GQLs proposed during the eighties
and nineties, before the emergence of current (practical) graph
database systems. Wood [47] studied GQLs focusing on their ex-
pressive power and computational complexity. Angles [6] compares
graph database systems in terms of their support for essential graph
queries. Barceló [13] studies the expressiveness and complexity of
several navigational query languages. Recently, Angles et al. [8]
presented a study on fundamental graph querying functionalities
(mainly graph patterns and navigational queries) and their imple-
mentation in modern graph query languages.

The extensive research on querying graph databases has not
give rise yet to a standard query language for property graphs (like
SQL for the relational model). Nevertheless, there are several in-
dustrial graph database products on the market. Gremlin [20] is
a graph-based programming language for property graphs which
makes extensive use of XPath to support complex graph traversals.
Cypher [15], originally introduced by Neo4j and now implemented
by a number of vendors, is a declarative query language for property
graphs that has graph patterns and path queries as basic constructs.
We primarily consider version 9 of Cypher as outlined by [19], while
recognizing that Cypher is an evolving language where several ad-
vancements compared to Cypher 9 have already been made. Oracle
has developed PGQL [44], a graph query languages that is closely
aligned to SQL and that supports powerful regular path expressions.
Several implementations of PGQL, both for non-distributed [39]
and distributed systems [37], exist. Here, we consider PGQL 1.1 [30],
which is the most recent version that is commercially available [29].

G-CORE has been designed to support most of the main and
relevant features provided by Cypher, PGQL, and Gremlin. Next
we describe the main differences among G-CORE, Cypher, PGQL,
and Gremlin based on the query features described in Section 3.
Some features (e.g. aggregate operators) will not be discussed here
as there are not substantial differences from one language to other.
Graph pattern queries. The notion of basic graph pattern, i.e. the
conjunction of node-edge-node patterns with filter conditions over
them, is intrinsically supported by Cypher, PGQL and G-CORE.
Some differences arise regarding the support for complex graph
patterns (i.e. union, difference, optional). Both Cypher and G-CORE
define the UNION operator to merge the results of two graph pat-
terns. The absence of graph patterns (negation) is mainly supported
via existential subqueries. It is expressed in G-CORE, Cypher and
PGQL with the WHERE NOT (EXISTS) clause. Optional graph pat-
terns can be explicitly declared in G-CORE and Cypher with the
OPTIONAL clause. PGQL does not support optional graph patterns,
although they can be roughly simulated with length-restricted
path expressions (see below). Although Gremlin is focused on nav-
igational queries, it supports complex graph patterns (including
branches and cycles) as the combination of traversal patterns.

Path queries. G-CORE, Cypher and PGQL support path queries in
terms of regular path expressions (i.e. edges can be labeled with reg-
ular expressions). The main difference between Cypher 9 and PGQL
is that the closure operator is restricted to a single repeated label /
value. Both Cypher and PGQL support path length restrictions, a
feature that although can be simulated using regular expressions,
improves the succinctness of the language. Gremlin supports arbi-
trary or fixed iteration of any graph traversal (i.e. it is more expres-
sive than regular path queries). Similar to Cypher, Gremlin allows
specifying the number of times a traversal should be performed.
Query output. The general approach followed by Cypher 9 and
PGQL is to return tables with atomic values (e.g. property values).
This approach can be extended such that a result table can contain
complex values. The extension in Cypher 9 allows returning nodes,
edges, and paths. Recent implementations of Cypher have the ability
to return graphs alongside this table [1, 33]. Gremlin also supports
returning complete paths as results. In contrast, G-CORE has been
designed to return graphs with paths as first class citizens.
Query composition. With the output of a query in G-CORE be-
ing a graph, it follows naturally that queries can be composed by
querying the output of one query by means of another query. Nei-
ther Cypher 9, PGQL or SPARQL supports this capability. Gremlin
supports creating graphs and then populate them before query-
ing the new graph. A notable parallel to G-CORE is the evolution
of Cypher 10, where queries are composed through the means of
“table-graphs”. Cypher 10 expresses queries with multiple graphs
and a driving table as input, and produces a set of graphs along
with a table as output. This allows Cypher 10 queries to compose
both linearly and through correlated subqueries [19].
Evaluation semantics. There are several variations among the
languages regarding the semantics for evaluating graph and path
expressions. In the context of graph pattern matching semantics,
G-CORE, PGQL, and Gremlin follow the homomorphism-based
semantics (i.e. no restrictions are imposed during matching), and
Cypher 9 follows a no-repeated-edge semantics (i.e. two variables
cannot be bound to the same term in a given match) to prevent
matching of potentially infinite result sets when enumerating all
paths of a pattern. With respect to the evaluation of path expres-
sions, G-CORE uses shortest-path semantics (i.e. paths of minimal
length are returned), Cypher 9 implements no-repeated-edge se-
mantics (i.e. each edge occurs at most once in the path), and Gremlin
follows arbitrary path semantics (i.e. all paths are considered). Addi-
tionally, Cypher 9 and PGQL allow changing the default semantics
by using built-in functions (e.g. allShortestPaths).
Expressive power versus efficiency. A balance between expres-
siveness and efficiency (complexity of evaluation) means a balance
between practice and theory. Currently no industrial graph query
language has a theoretical analysis of its complexity and, conversely,
theoretical results have not been systematically translated into a
design. One of the main virtues of G-CORE is that its design is the
integration of both sources of knowledge and experience.
SPARQL and RDF. In this paper we concentrated on property
graphs, but there are other data models and query languages avail-
able. A well-known alternative is the Resource Description Frame-
work (RDF), a W3C recommendation that defines a graph-based

G-CORE SIGMOD’18, June 10–15, 2018, Houston, TX, USA

data model for describing and publishing Web metadata. RDF has
a standard query language, SPARQL [34], which was designed to
support several types of complex graph patterns (including union
and optional). Its latest version, SPARQL 1.1 [21], adds support for
negation, regular path queries (called property paths), subqueries
and aggregate operators. The path queries support reachability
tests, but paths cannot be returned, nor can the cost of paths be
computed. The evaluation of SPARQL graph patterns follows a
homomorphism-based bag semantics, whereas property paths are
evaluated using an arbitrary paths semantics [8]. SPARQL allows
queries that return RDF graphs, however creating graphs consisting
of multiple types of nodes (e.g., belonging to different RDF schema
classes; having different properties) in one query is not possible
as SPARQL lacks flexible graph aggregation: its CONSTRUCT di-
rectly instantiates a single binding table without reshaping. Such
constructed RDF graphs can not be reused as subqueries, that is, for
composing queries; nor does the language offer “full graph” opera-
tions to union or diff at the graph level. We think the ideas outlined
in G-CORE could also inspire further development of SPARQL.

7 CONCLUSIONS
Graph databases have come of age. The number of systems,
databases and query languages for graphs, both commercial and
open source, indicates that these technologies are gaining wide
acceptance [4, 5, 11, 14, 16, 23, 26, 27, 31, 38–43].

At this stage, it is relevant to begin making efforts towards in-
teroperability of these systems. A language like G-CORE could
work as a base for integrating the manifold models and approaches
towards querying graphs.

We defend here two principles we think should be at the foun-
dations of the future graph query languages: composability, that
is, having graphs and their mental model as departure and ending
point and treat the most popular feature of graphs, namely paths,
as first class citizens.

The language we present, G-CORE, which builds on the experi-
ences with working systems, as well as theoretical results, show
these desiderata are not only possible, but computationally feasible
and approachable for graph users. Furthermore, we postulate that
G-CORE can build upon existing relational technology, as a starting
point, by using techniques such as views, recursions, etc. These
efforts are currently underway by members of the LDBC Graph
Query Language Task Force.

This paper is a call to action for the stakeholders driving the
graph database industry.

ACKNOWLEDGEMENTS
The authors are grateful to the anonymous reviewers for their useful
comments. R. Angles, M. Arenas, P. Barceló and C. Gutierrez were
partially supported by the Millennium Nucleus Center for Semantic
Web Research under grant NC120004, and the Millennium Institute
for Foundational Research on Data. M. Arenas was also partially
supported by the Fondecyt grant 1161473.

REFERENCES
[1] 2017. Cypher for Apache Spark. (2017). https://github.com/opencypher/

cypher-for-apache-spark
[2] 2017. The openCypher Project. (2017). http://www.openCypher.org

[3] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.
Addison-Wesley.

[4] AgensGraph - The Performance-Driven Graph Database. 2017. (2017). http:
//www.agensgraph.com/

[5] Amazon Neptune - Fast, reliable graph database build for cloud. 2017. (2017).
https://aws.amazon.com/neptune/

[6] Renzo Angles. 2012. A comparison of current graph database models. In 4rd Int.
Workshop on Graph Data Management: Techniques and Applications.

[7] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.
Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow,
Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2017. G-CORE: A Core for
Future Graph Query Languages. CoRR abs/1712.01550 (2017). http://arxiv.org/
abs/1712.01550

[8] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter,
and Domagoj Vrgoc. 2017. Foundations of Modern Query Languages for Graph
Databases. Comput. Surveys 50, 5 (2017). https://doi.org/10.1145/3104031

[9] Renzo Angles, Peter Boncz, Josep Larriba-Pey, Irini Fundulaki, Thomas Neumann,
Orri Erling, Peter Neubauer, Norbert Martinez-Bazan, Venelin Kotsev, and Ioan
Toma. 2014. The Linked Data Benchmark Council: A Graph and RDF Industry
Benchmarking Effort. SIGMOD Record 43, 1 (May 2014), 27–31.

[10] Renzo Angles and Claudio Gutierrez. 2008. Survey of graph database models.
ACM Computing Surveys (CSUR) 40, 1 (2008), 1–39.

[11] ArangoDB - Native multimodel database. 2017. (2017). https://arangodb.com/
[12] Pablo Barceló, Leonid Libkin, Anthony W. Lin, and Peter T. Wood. 2012. Expres-

sive Languages for Path Queries over Graph-Structured Data. TODS 37, 4, Article
31 (Dec. 2012), 46 pages.

[13] Pablo Barceló Baeza. 2013. Querying graph databases. In Proc. of the 32nd Sym-
posium on Principles of Database Systems (PODS). ACM, 175–188.

[14] Blazegraph. 2017. (2017). https://www.blazegraph.com/
[15] Cypher - Graph Query Language. 2017. (2017). http://neo4j.com/developer/

cypher-query-language/
[16] DataStax Enterprise Graph. 2017. (2017). https://www.datastax.com/products/

datastax-enterprise-graph
[17] Anton Dries, Siegfried Nijssen, and Luc De Raedt. 2009. A Query Language for

Analyzing Networks. In Proc. of the 18th ACM Conference on Information and
Knowledge Management (CIKM). ACM, 485–494.

[18] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,
Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC Social Network
Benchmark: Interactive Workload. In SIGMOD2015. ACM, 619–630.

[19] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In ACM SIGMOD International Conference on Management of Data (SIGMOD
2018).

[20] Gremlin - A graph traversal language. 2017. (2017). https://github.com/tinkerpop/
gremlin

[21] Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language - W3C
Recommendation. https://www.w3.org/TR/sparql11-query/. (March 21 2013).

[22] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-
Pérez, Thomas Manhardt, Hassan Chafi, Mihai Capotă, Narayanan Sundaram,
Michael Anderson, Ilie Gabriel Tănase, Yinglong Xia, Lifeng Nai, and Peter
Boncz. 2016. LDBC Graphalytics: A Benchmark for Large-scale Graph Analysis
on Parallel and Distributed Platforms. PVLDB 9, 13 (Sept. 2016), 1317–1328.

[23] JanusGraph - Distributed graph database. 2017. (2017). http://janusgraph.org/
[24] Venelin Kotsev, Orri Erling, Atanas Kiryakov, Irini Fundulaki, and Vladimir

Alexiev. 2017. The Semantic Publishing Benchmark v2.0. (2017). github.com/
ldbc/ldbc_spb_bm_2.0/blob/master/doc/LDBC_SPB_v2.0.docx

[25] Alberto O. Mendelzon and Peter T. Wood. 1995. Finding Regular Simple Paths in
Graph Databases. SIAM J. Comput. 24, 6 (1995), 1235–1258.

[26] Microsoft Azure Cosmos DB. 2017. (2017). https://docs.microsoft.com/en-us/
azure/cosmos-db/introduction

[27] Neo4j. 2017. The Neo4j Developer Manual v3.3. (2017).
[28] The openCypher implementer’s group. 2017. Property Graph Model.

(2017). https://github.com/opencypher/openCypher/blob/master/docs/
property-graph-model.adoc

[29] Oracle. 2017. Oracle Big Data Spatial and Graph. (2017). http://www.oracle.com/
technetwork/database/database-technologies/bigdata-spatialandgraph/

[30] Oracle. 2017. PGQL 1.1 Specification. (2017). http://pgql-lang.org/spec/1.1/
[31] OrientDB - Multi-Model Database. 2017. (2017). http://orientdb.com/
[32] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics and com-

plexity of SPARQL. ACM Trans. Database Syst. 34, 3 (2009), 16:1–16:45.
[33] Stefan Plantikow, Martin Junghanns, Petra Selmer, and Max Kießling. 2017.

Cypher and Spark: Multiple Graphs and More in openCypher. (2017). https:
//www.youtube.com/watch?v=EaCFxDxhtsI

[34] Eric Prud’hommeaux and Andy Seaborne. 2008. SPARQL Query Language for
RDF - W3C Recommendation. https://www.w3.org/TR/rdf-sparql-query/. (2008).

[35] Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. 2017. Regular Queries on
Graph Databases. Theory Comput. Syst. 61, 1 (2017), 31–83.

https://github.com/opencypher/cypher-for-apache-spark
https://github.com/opencypher/cypher-for-apache-spark
http://www.openCypher.org
http://www.agensgraph.com/
http://www.agensgraph.com/
https://aws.amazon.com/neptune/
http://arxiv.org/abs/1712.01550
http://arxiv.org/abs/1712.01550
https://doi.org/10.1145/3104031
https://arangodb.com/
https://www.blazegraph.com/
http://neo4j.com/developer/cypher-query-language/
http://neo4j.com/developer/cypher-query-language/
https://www.datastax.com/products/datastax-enterprise-graph
https://www.datastax.com/products/datastax-enterprise-graph
https://github.com/tinkerpop/gremlin
https://github.com/tinkerpop/gremlin
http://janusgraph.org/
github.com/ldbc/ldbc_spb_bm_2.0/blob/master/doc/LDBC_SPB_v2.0.docx
github.com/ldbc/ldbc_spb_bm_2.0/blob/master/doc/LDBC_SPB_v2.0.docx
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc
https://github.com/opencypher/openCypher/blob/master/docs/property-graph-model.adoc
http://www.oracle.com/technetwork/database/database-technologies/bigdata-spatialandgraph/
http://www.oracle.com/technetwork/database/database-technologies/bigdata-spatialandgraph/
http://pgql-lang.org/spec/1.1/
http://orientdb.com/
https://www.youtube.com/watch?v=EaCFxDxhtsI
https://www.youtube.com/watch?v=EaCFxDxhtsI

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Angles et al.

[36] Marko A. Rodriguez and Peter Neubauer. 2010. Constructions from Dots and
Lines. Bulletin of the American Society for Information Science and Technology 36,
6 (Aug. 2010), 35–41.

[37] Nicholas P Roth, Vasileios Trigonakis, Sungpack Hong, Hassan Chafi, Anthony
Potter, Boris Motik, and Ian Horrocks. 2017. PGX.D/Async: A Scalable Distributed
Graph Pattern Matching Engine. (2017).

[38] Michael Rudolf, Marcus Paradies, Christof Bornhövd, and Wolfgang Lehner. 2013.
The Graph Story of the SAP HANA Database.. In BTW, Vol. 13. 403–420.

[39] Martin Sevenich, Sungpack Hong, Oskar van Rest, Zhe Wu, Jayanta Banerjee,
and Hassan Chafi. 2016. Using domain-specific languages for analytic graph
databases. Proceedings of the VLDB Endowment 9, 13 (2016), 1257–1268.

[40] Sparksee - Scalable high-performance graph database. 2017. (2017). http://www.
sparsity-technologies.com/#sparksee

[41] Stardog - The Knowledge Graph Platform for the Enterprise. 2017. (2017). http:
//www.stardog.com/

[42] TigerGraph - The First Native Parallel Graph. 2017. (2017). https://www.
tigergraph.com/

[43] Titan - Distributed Graph Database. 2017. (2017). http://titan.thinkaurelius.com/
[44] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.

2016. PGQL: a property graph query language. In GRADES2016. ACM, 7.
[45] Moshe Y. Vardi. 1982. The Complexity of Relational Query Languages (Extended

Abstract). In STOC. 137–146.
[46] Hannes Voigt. 2017. Declarative Multidimensional Graph Queries, Patrick Marcel

and Esteban Zimányi (Eds.). Business Intelligence – 6th European Summer School,
eBISS 2016, Tours, France, July 3-8, 2016, Tutorial Lectures 280, 1–37.

[47] Peter T. Wood. 2012. Query languages for graph databases. SIGMOD Record 41, 1
(2012), 50–60.

View publication statsView publication stats

http://www.sparsity-technologies.com/#sparksee
http://www.sparsity-technologies.com/#sparksee
http://www.stardog.com/
http://www.stardog.com/
https://www.tigergraph.com/
https://www.tigergraph.com/
http://titan.thinkaurelius.com/
https://www.researchgate.net/publication/324113477

	Abstract
	1 Introduction
	1.1 Three Main Challenges
	1.2 Contributions

	2 Path Property Graphs
	3 A Guided Tour of G-CORE
	4 Formalizing and Analyzing G-CORE
	5 Combining Graphs and Tables
	6 Discussion and Related Work
	7 Conclusions
	References

