600 research outputs found
Development of a hardware-in-the-loop analysis framework for advanced ITS applications
As Intelligent Transportation Systems (ITS) become more prevalent, there is a need for a system capable of the rigorous evaluation of new ITS strategies for a wide variety of applications. Pre-deployment testing and fine-tuning of the system, performance evaluation, and alternatives analysis are all potential benefits that could be gained through the evaluation of ITS. Simulation, an increasingly popular tool for transportation analysis, would seem an ideal solution to this problem as it allows for the consideration of many scenarios that may be improbable or impossible to observe in the field. Also, simulation provides a framework that allows for the application of rigorous analysis techniques to the output data, providing an accurate and statistically significant conclusion.
The difficulty is that many ITS strategies are difficult or impossible to implement in a simulated environment. The rapid nature of technology development and the complicated nature of many ITS solutions are difficult to emulate in simulation models. Furthermore, the emulation of a particular ITS solution is not guaranteed to provide the same result that the physical system would, were it subject to the same inputs.
This study seeks to establish a framework for the analysis of advanced ITS applications through the use of Hardware-in-the-Loop Simulation (HILS), which provides a procedure for interfacing simulation models with real-world hardware to conduct analysis. This solution provides the benefits of both advanced ITS evaluation and simulation for powerful and accurate analysis. A framework is established that includes all the steps of the modeling process including construction, validation, calibration, and output analysis. This ensures that the process surrounding the HILS implementation is valid so that the results of the evaluation are accurate and defendable.
Finally, a case study of the application of the developed framework to the evaluation, a real-world implementation of an advanced ITS application (SCATS in this case) is considered. The effectiveness of the framework in creating and evaluating a corridor using a simulation model wed to real-world hardware is shown. The results of the analysis show the power of this method when correctly applied and demonstrate where further analysis could expand upon the proposed procedure.M.S.Committee Chair: Dr. Michael Hunter; Committee Member: Dr. Jiawen Yang; Committee Member: Dr. Jorge Laval; Committee Member: Dr. Michael Rodger
Does XR injectable naltrexone prevent relapse as effectively as daily sublingual buprenorphine-naloxone?
Q: Does XR injectable naltrexone prevent relapse as effectively as daily sublingual buprenorphine-naloxone? Evidence-based answer: Yes. Monthly extended-release injectable naltrexone (XR-NTX) treats opioid use disorder as effectively as daily sublingual buprenorphine-naloxone (BUP-NX) without causing any increase in serious adverse events or fatal overdoses. (strength of recommendation: A, 2 good-quality RCTs).Matthew Roe, MD (Mountain Area Health Education Center (MAHEC), Asheville, NC); Courtenay Gilmore Wilson, PharmD, BCPS, BCACP, CDE, CPP (Eshelman School of Pharmacy, University of North Carolina Health Sciences at MAHEC, Asheville) Carriedelle Wilson Fusco, FNP-BC; Stephen Hulkower, MD (University of North Carolina Health Sciences at MAHEC, Asheville); Sue Stigleman, MLS (University of North Carolina Health Sciences at MAHEC, Asheville)Includes bibliographical reference
A highly conserved complete accessory Escherichia coli type III secretion system 2 is widespread in bloodstream isolates of the ST69 lineage
The work was funded by the Scottish Executive via the Chief Scientists Office through the provision of a grant to establish the Scottish Healthcare Associated Infection Prevention Institute (SHAIPI). The funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.Bacterial type III secretion systems (T3SSs) play an important role in pathogenesis of Gram-negative infections. Enteropathogenic and enterohemorrhagic Escherichia coli contain a well-defined T3SS but in addition a second T3SS termed E. coli T3SS 2 (ETT2) has been described in a number of strains of E. coli. The majority of pathogenic E. coli contain elements of a genetic locus encoding ETT2, but which has undergone significant mutational attrition rendering it without predicted function. Only a very few strains have been reported to contain an intact ETT2 locus. To investigate the occurrence of the ETT2 locus in strains of human pathogenic E. coli, we carried out genomic sequencing of 162 isolates obtained from patient blood cultures in Scotland. We found that 22 of 26 sequence type (ST) 69 isolates from this collection contained an intact ETT2 together with an associated eip locus which encodes putative secreted ETT2 effectors as well as eilA, a gene encoding a putative transcriptional regulator of ETT2 associated genes. Using a reporter gene for eilA activation, we defined conditions under which this gene was differentially activated. Analysis of published E. coli genomes with worldwide representation showed that ST69 contained an intact ETT2 in these strains as well. The conservation of the genes encoding ETT2 in human pathogenic ST69 strains strongly suggests it has importance in infection, although its exact functional role remains obscure.Publisher PDFPeer reviewe
Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes
Abstract\ud
\ud
\ud
\ud
Background\ud
\ud
Sugarcane (Saccharum spp.) has become an increasingly important crop for its leading role in biofuel production. The high sugar content species S. officinarum is an octoploid without known diploid or tetraploid progenitors. Commercial sugarcane cultivars are hybrids between S. officinarum and wild species S. spontaneum with ploidy at ~12×. The complex autopolyploid sugarcane genome has not been characterized at the DNA sequence level.\ud
\ud
\ud
\ud
Results\ud
\ud
The microsynteny between sugarcane and sorghum was assessed by comparing 454 pyrosequences of 20 sugarcane bacterial artificial chromosomes (BACs) with sorghum sequences. These 20 BACs were selected by hybridization of 1961 single copy sorghum overgo probes to the sugarcane BAC library with one sugarcane BAC corresponding to each of the 20 sorghum chromosome arms. The genic regions of the sugarcane BACs shared an average of 95.2% sequence identity with sorghum, and the sorghum genome was used as a template to order sequence contigs covering 78.2% of the 20 BAC sequences. About 53.1% of the sugarcane BAC sequences are aligned with sorghum sequence. The unaligned regions contain non-coding and repetitive sequences. Within the aligned sequences, 209 genes were annotated in sugarcane and 202 in sorghum. Seventeen genes appeared to be sugarcane-specific and all validated by sugarcane ESTs, while 12 appeared sorghum-specific but only one validated by sorghum ESTs. Twelve of the 17 sugarcane-specific genes have no match in the non-redundant protein database in GenBank, perhaps encoding proteins for sugarcane-specific processes. The sorghum orthologous regions appeared to have expanded relative to sugarcane, mostly by the increase of retrotransposons.\ud
\ud
\ud
\ud
Conclusions\ud
\ud
The sugarcane and sorghum genomes are mostly collinear in the genic regions, and the sorghum genome can be used as a template for assembling much of the genic DNA of the autopolyploid sugarcane genome. The comparable gene density between sugarcane BACs and corresponding sorghum sequences defied the notion that polyploidy species might have faster pace of gene loss due to the redundancy of multiple alleles at each locus.We acknowledge our colleagues at the University of Oklahomas Advanced Center for Genome Technology, Chunmei Qu and Ping Wang for their assistance with 454 GSFLX sequencing sample preparation and Steve Kenton for his help with deconvoluting the pooled BACs and their subsequent assembly. We also thank Eric Tang for assistance on sequencing two BACs using Sanger sequencers. This project is supported by startup funds from the University of Illinois to RM and a grant from the Energy Bioscience Institute (EBI) to SPM, MEH, RM, and DSR.We acknowledge our colleagues at the University of Oklahoma's Advanced Center for Genome Technology, Chunmei Qu and Ping Wang for their assistance with 454 GS-FLX sequencing sample preparation and Steve Kenton for his help with deconvoluting the pooled BACs and their subsequent assembly. We also thank Eric Tang for assistance on sequencing two BACs using Sanger sequencers. This project is supported by start-up funds from the University of Illinois to RM and a grant from the Energy Bioscience Institute (EBI) to SPM, MEH, RM, and DSR
Recommended from our members
Competing Risks of Cardiovascular Versus Noncardiovascular Death During Long‐Term Follow‐Up After Acute Coronary Syndromes
Background: Understanding the relative risk of cardiovascular versus noncardiovascular death is important for designing clinical trials. These risks may differ depending on patient age, sex, and type of acute coronary syndrome (ACS). Methods and Results: IMPROVE‐IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial) was a randomized controlled trial of simvastatin plus either ezetimibe or placebo following stabilized ACS. Cause of death was adjudicated by an independent committee. We compared the cumulative incidence of cardiovascular and noncardiovascular death for patients with unstable angina/non‐ST‐segment elevation myocardial infarction (UA/NSTEMI) and ST‐segment elevation myocardial infarction (STEMI), in those <65 and ≥65 years old, and males and females, over 7 years of follow‐up. Of 18 131 patients, the presenting event was STEMI for 5190 (29%) and UA/NSTEMI for 12 941 (71%); 10 173 (56%) patients were <65 years old and 7971 (44%) were ≥65 years old at presentation. UA/NSTEMI patients were older than STEMI patients, with more cardiovascular and noncardiovascular risk factors. In STEMI patients, the cumulative incidence of cardiovascular death was higher for ∼4 years following the index event, after which noncardiovascular death predominated. In UA/NSTEMI patients, the cumulative incidence of cardiovascular death remained higher than noncardiovascular death over the full follow‐up period. Patients ≥65 years old and <65 years old had a higher incidence of cardiovascular death than noncardiovascular death over the entirety of follow‐up. Female patients had a higher incidence of cardiovascular death than noncardiovascular death for ∼6 years following the index event; male patients had a higher incidence of cardiovascular death than noncardiovascular death over the entirety of follow‐up. Conclusions: Among post‐ACS patients enrolled in a long‐term clinical trial, the relative incidence of cardiovascular and noncardiovascular death differed based on type of ACS presentation and sex, but not age. These findings further delineate long‐term prognosis after ACS and should inform the design of future cardiovascular outcomes trials
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples
We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations (BAO) in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey, which is part of the Sloan Digital Sky Survey III. Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range 0.2 < z < 0.7. We also compare these results with those from the publicly released DR9 and DR10 samples. Assuming a concordance Λ cold dark matter (ΛCDM) cosmological model, the DR11 sample covers a volume of 13 Gpc3 and is the largest region of the Universe ever surveyed at this density. We measure the correlation function and power spectrum, including density-field reconstruction of the BAO feature. The acoustic features are detected at a significance of over 7σ in both the correlation function and power spectrum. Fitting for the position of the acoustic features measures the distance relative to the sound horizon at the drag epoch, rd, which has a value of rd,fid = 149.28 Mpc in our fiducial cosmology. We find DV = (1264 ± 25 Mpc)(rd/rd,fid) at z = 0.32 and DV = (2056 ± 20 Mpc)(rd/rd,fid) at z = 0.57. At 1.0 per cent, this latter measure is the most precise distance constraint ever obtained from a galaxy survey. Separating the clustering along and transverse to the line of sight yields measurements at z = 0.57 of DA = (1421 ± 20 Mpc)(rd/rd,fid) and H = (96.8 ± 3.4 km s−1 Mpc−1)(rd,fid/rd). Our measurements of the distance scale are in good agreement with previous BAO measurements and with the predictions from cosmic microwave background data for a spatially flat CDM model with a cosmological constant.Publisher PDFPeer reviewe
The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey
We present the design and performance of the multi-object fiber spectrographs
for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon
Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999
on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the
spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II
surveys, enabling a wide variety of Galactic and extra-galactic science
including the first observation of baryon acoustic oscillations in 2005. The
spectrographs were upgraded in 2009 and are currently in use for BOSS, the
flagship survey of the third-generation SDSS-III project. BOSS will measure
redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha
absorption of 160,000 high redshift quasars over 10,000 square degrees of sky,
making percent level measurements of the absolute cosmic distance scale of the
Universe and placing tight constraints on the equation of state of dark energy.
The twin multi-object fiber spectrographs utilize a simple optical layout
with reflective collimators, gratings, all-refractive cameras, and
state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in
two channels over a bandpass covering the near ultraviolet to the near
infrared, with a resolving power R = \lambda/FWHM ~ 2000. Building on proven
heritage, the spectrographs were upgraded for BOSS with volume-phase
holographic gratings and modern CCD detectors, improving the peak throughput by
nearly a factor of two, extending the bandpass to cover 360 < \lambda < 1000
nm, and increasing the number of fibers from 640 to 1000 per exposure. In this
paper we describe the original SDSS spectrograph design and the upgrades
implemented for BOSS, and document the predicted and measured performances.Comment: 43 pages, 42 figures, revised according to referee report and
accepted by AJ. Provides background for the instrument responsible for SDSS
and BOSS spectra. 4th in a series of survey technical papers released in
Summer 2012, including arXiv:1207.7137 (DR9), arXiv:1207.7326 (Spectral
Classification), and arXiv:1208.0022 (BOSS Overview
Recommended from our members
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample
We present measurements of galaxy clustering from the Baryon Oscillation
Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III
(SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains
264,283 massive galaxies covering 3275 square degrees with an effective
redshift z=0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance
Lambda-CDM cosmological model, this sample covers an effective volume of 2.2
Gpc^3, and represents the largest sample of the Universe ever surveyed at this
density, n = 3 x 10^-4 h^-3 Mpc^3. We measure the angle-averaged galaxy
correlation function and power spectrum, including density-field reconstruction
of the baryon acoustic oscillation (BAO) feature. The acoustic features are
detected at a significance of 5\sigma in both the correlation function and
power spectrum. Combining with the SDSS-II Luminous Red Galaxy Sample, the
detection significance increases to 6.7\sigma. Fitting for the position of the
acoustic features measures the distance to z=0.57 relative to the sound horizon
DV /rs = 13.67 +/- 0.22 at z=0.57. Assuming a fiducial sound horizon of 153.19
Mpc, which matches cosmic microwave background constraints, this corresponds to
a distance DV(z=0.57) = 2094 +/- 34 Mpc. At 1.7 per cent, this is the most
precise distance constraint ever obtained from a galaxy survey. We place this
result alongside previous BAO measurements in a cosmological distance ladder
and find excellent agreement with the current supernova measurements. We use
these distance measurements to constrain various cosmological models, finding
continuing support for a flat Universe with a cosmological constant.Comment: 33 page
US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report
This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in
Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference
The Baryon Oscillation Spectroscopic Survey of SDSS-III
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the
scale of baryon acoustic oscillations (BAO) in the clustering of matter over a
larger volume than the combined efforts of all previous spectroscopic surveys
of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as
i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7.
Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000
quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5.
Early results from BOSS include the first detection of the large-scale
three-dimensional clustering of the Lyman alpha forest and a strong detection
from the Data Release 9 data set of the BAO in the clustering of massive
galaxies at an effective redshift z = 0.57. We project that BOSS will yield
measurements of the angular diameter distance D_A to an accuracy of 1.0% at
redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the
same redshifts. Forecasts for Lyman alpha forest constraints predict a
measurement of an overall dilation factor that scales the highly degenerate
D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey
is complete. Here, we provide an overview of the selection of spectroscopic
targets, planning of observations, and analysis of data and data quality of
BOSS.Comment: 49 pages, 16 figures, accepted by A
- …