3 research outputs found

    The ladies trial: laparoscopic peritoneal lavage or resection for purulent peritonitisA and Hartmann's procedure or resection with primary anastomosis for purulent or faecal peritonitisB in perforated diverticulitis (NTR2037)

    Get PDF
    Background: Recently, excellent results are reported on laparoscopic lavage in patients with purulent perforated diverticulitis as an alternative for sigmoidectomy and ostomy. The objective of this study is to determine whether LaparOscopic LAvage and drainage is a safe and effective treatment for patients with purulent peritonitis (LOLA-arm) and to determine the optimal resectional strategy in patients with a purulent or faecal peritonitis (DIVA-arm: perforated DIVerticulitis: sigmoidresection with or without Anastomosis). Methods/Design: In this multicentre randomised trial all patients with perforated diverticulitis are included. Upon laparoscopy, patients with purulent peritonitis are treated with laparoscopic lavage and drainage, Hartmann's procedure or sigmoidectomy with primary anastomosis in a ratio of 2:1:1 (LOLA-arm). Patients with faecal peritonitis will be randomised 1:1 between Hartmann's procedure and resection with primary anastomosis (DIVA-arm). The primary combined endpoint of the LOLA-arm is major morbidity and mortality. A sample size of 132:66:66 patients will be able to detect a difference in the primary endpoint from 25% in resectional groups compared to 10% in the laparoscopic lavage group (two sided alpha = 5%, power = 90%). Endpoint of the DIVA-arm is stoma free survival one year after initial surgery. In this arm 212 patients are needed to significantly demonstrate a difference of 30% (log rank test two sided alpha = 5% and powe

    The global abundance of tree palms

    Get PDF
    Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≄10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests
    corecore