1,639 research outputs found
Territoriality: the example of the White Rhinoceros
The concept of territoriality needs review in the light of recent mammalian studies. Intensive behavioural observations were carried out on the white rhinoceros in Zululand, South Africa, and results on social organisation are summarised. Territoriality is exhibited by certain adult males and has the following features: (i) mutually exclusive ranges of 1-2 km2; (ii) a dominant assertiveness in interactions within the territory; (iii) specialised scent marking techniques using dung and urine; (iv) exclusive participation in reproduction. Territories may be shared with one or more subsidiary bulls. Territoriality in the white rhino may be characterised as a space-correlated dominance relationship with the function of ordering reproductive competition among males. It plays no significant role in population regulation. These conclusions are extended to other territorial ungulates. Methodological criteria for territoriality are suggested. Evidence is needed on (i) differing social classes; (ii) range utilisation patterns; (iii) spatial features of dominance relationships
Consumer-Resource Dynamics: Quantity, Quality, and Allocation
CITATION: Getz, W. M. & Owen-Smith, N. 2011. Consumer-resource dynamics : quantity, quality, and allocation. PLoS ONE, 6(1): e14539, doi:10.1371/journal.pone.0014539.The original publication is available at http://journals.plos.org/plosoneBackground: The dominant paradigm for modeling the complexities of interacting populations and food webs is a system of coupled ordinary differential equations in which the state of each species, population, or functional trophic group is represented by an aggregated numbers-density or biomass-density variable. Here, using the metaphysiological approach to model consumer-resource interactions, we formulate a two-state paradigm that represents each population or group in a food web in terms of both its quantity and quality. Methodology and Principal Findings: The formulation includes an allocation function controlling the relative proportion of extracted resources to increasing quantity versus elevating quality. Since lower quality individuals senesce more rapidly than higher quality individuals, an optimal allocation proportion exists and we derive an expression for how this proportion depends on population parameters that determine the senescence rate, the per-capita mortality rate, and the effects of these rates on the dynamics of the quality variable. We demonstrate that oscillations do not arise in our model from quantity-quality interactions alone, but require consumer-resource interactions across trophic levels that can be stabilized through judicious resource allocation strategies. Analysis and simulations provide compelling arguments for the necessity of populations to evolve quality-related dynamics in the form of maternal effects, storage or other appropriate structures. They also indicate that resource allocation switching between investments in abundance versus quality provide a powerful mechanism for promoting the stability of consumer-resource interactions in seasonally forcing environments. Conclusions/Significance: Our simulations show that physiological inefficiencies associated with this switching can be favored by selection due to the diminished exposure of inefficient consumers to strong oscillations associated with the wellknown paradox of enrichment. Also our results demonstrate how allocation switching can explain observed growth patterns in experimental microbial cultures and discuss how our formulation can address questions that cannot be answered using the quantity-only paradigms that currently predominate. © 2011 Getz, Owen-Smith.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014539Publisher's versio
Abundance and guild structure of grasshoppers (Orthoptera: Acridoidea) in communally grazed and protected savanna
This study was conducted to determine how savanna grass sward modifications caused by heavy grazing pressure influenced the abundance and guild structure of grasshoppers. Heavily grazed communal land was compared with a lightly grazed area and a mowed airstrip, in adjacent protected land, in the Mpumalanga lowveld, South Africa. Plant species composition, height, aerial cover and greenness of grass in the herbaceous stratum were measured in representative sites. Total grasshopper abundance and relative abundance of grasshopper species were also assessed in each site. Grasshoppers were assigned to feeding and habitat functional groups for comparison among the three areas. The heavily grazed area, characterised by short vegetation and low aerial cover, high greenness of grass, and high frequency of forbs, was inhabited by grasshopper species associated with bare ground or short and/or sparse grass, that were non-graminivorous or soft grass feeders. The lightly grazed area, characterised by tall vegetation and high aerial cover, low greenness of grass, and low frequency of forbs, was inhabited by grasshopper species associated with long and/or thick grass, that were mixed feeders or tough grass feeders. The mowed area, characterised by short vegetation and low aerial cover, low greenness of grass, and low frequency of forbs, exhibited lower grasshopper abundance, species richness, and diversity than either of the grazed areas
A Mathematical Model of Black Rhino Translocation Strategy
A deterministic mathematical model of the black rhino population in South Africa will be discussed. The model is constructed by dividing the black rhino population into multiple patches. The impact of human intervention on different translocation strategies is incorporated into the model. It is shown that, when implemented correctly, translocation can accelerate the growth rate of the total black rhino population. Equilibrium points are shown with their local stability criteria
How free-ranging ungulates with differing water dependencies cope with seasonal variation in temperature and aridity
Large mammals respond to seasonal changes in temperature and precipitation by behavioural and physiological flexibility. These responses are likely to differ between species with differing water dependencies. We used biologgers to contrast the seasonal differences in activity patterns, microclimate selection, distance to potential water source and body temperature of the water-independent gemsbok (Oryx gazella gazella) and water-dependent blue wildebeest (Connochaetes taurinus), free-living in the arid Kalahari region of Botswana. Gemsbok were more active nocturnally during the hot seasons than in the cold-dry season, while wildebeest showed no seasonal difference in their nocturnal activity level. Both species similarly selected shaded microclimates during the heat of the day, particularly during the hot seasons. Wildebeest were further than 10 km from surface water 30% or more of the time, while gemsbok were frequently recorded >20 km from potential water sources. In general, both species showed similar body temperature variation with high maximum 24-h body temperature when conditions were hot and low minimum 24-h body temperatures when conditions were dry, resulting in the largest amplitude of 24-h body temperature rhythm during the hot-dry period. Wildebeest thus coped almost as well as gemsbok with the fairly typical seasonal conditions that occurred during our study period. They do need to access surface water and may travel long distances to do so when local water sources become depleted during drought conditions. Thus, perennial water sources should be provided judiciously and only where essential
Contrasting capabilities of two ungulate species to cope with extremes of aridity
Southern Africa is expected to experience increased frequency and intensity of droughts through
climate change, which will adversely affect mammalian herbivores. Using bio-loggers, we tested
the expectation that wildebeest (Connochaetes taurinus), a grazer with high water-dependence,
would be more sensitive to drought conditions than the arid-adapted gemsbok (Oryx gazella
gazella). The study, conducted in the Kalahari, encompassed two hot-dry seasons with similar
ambient temperatures but differing rainfall patterns during the preceding wet season. In the drier
year both ungulates selected similar cooler microclimates, but wildebeest travelled larger distances
than gemsbok, presumably in search of water. Body temperatures in both species reached lower
daily minimums and higher daily maximums in the drier season but daily fluctuations were wider
in wildebeest than in gemsbok. Lower daily minimum body temperatures displayed by wildebeest
suggest that wildebeest were under greater nutritional stress than gemsbok. Moving large distances
when water is scarce may have compromised the energy balance of the water dependent wildebeest,
a trade-off likely to be exacerbated with future climate change.DATA AVAILABILITY : The data that support the findings of this study are available in AfriMove repository, www.afrimove.org.The National Research Foundation of South Africa, the Centre for African Ecology; and University of the Witwatersrand Faculty of Science Research Committee.https://www.nature.com/srepam2022Zoology and Entomolog
X-ray Detection of the Proto Supermassive Binary Black Hole at the Centre of Abell 400
We report the first X-ray detection of a proto-supermassive binary black hole
at the centre of Abell 400. Using the Chandra ACIS, we are able to clearly
resolve the two active galactic nuclei in 3C 75, the well known double radio
source at the centre of Abell 400. Through analysis of the new Chandra
observation of Abell 400 along with 4.5 GHz and 330 MHz VLA radio data, we will
show new evidence that the Active Galactic Nuclei in 3C 75 are a bound system.
Methods. Using the high quality X-ray data, we map the temperature, pressure,
density, and entropy of the inner regions as well as the cluster profile
properties out to ~18'. We compare features in the X-ray and radio images to
determine the interaction between the intra-cluster medium and extended radio
emission. The Chandra image shows an elongation of the cluster gas along the
northeast-southwest axis; aligned with the initial bending of 3C 75's jets.
Additionally, the temperature profile shows no cooling core, consistent with a
merging system. There is an apparent shock to the south of the core consistent
with a Mach number of M~1.4 or speed of v~1200 km s^-1. Both Active Galactic
Nuclei, at least in projection, are located in the low entropy, high density
core just north of the shock region. We find that the projected path of the
jets does not follow the intra-cluster medium surface brightness gradient as
expected if their path were due to buoyancy. We also find that both central AGN
are extended and include a thermal component. Based on this analysis, we
conclude that the Active Galactic Nuclei in 3C 75 are a bound system from a
previous merger. They are contained in a low entropy core moving through the
intra-cluster medium at 1200 km s^-1. The bending of the jets is due to the
local intra-cluster medium wind.Comment: 16 pages, 14 figures, accepted for publication in A&
The role of religion in the longer-range future, April 6, 7, and 8, 2006
This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This conference that took place during April 6, 7, and 8, 2006. Co-organized by David Fromkin, Director, Frederick S. Pardee Center for the Study of the Longer-Range Future, and Ray L. Hart, Dean ad interim Boston University School of TheologyThe conference brought together some 40 experts from various disciplines to ponder upon the “great dilemma” of how science, religion, and the human future interact. In particular, different panels looked at trends in what is happening to religion around the world, questions about how religion is impacting the current political and economic order, and how the social dynamics unleashed by science and by religion can be reconciled.Carnegie Council on Ethics and International Affair
A Giant Metrewave Radio Telescope/Chandra view of IRAS 09104+4109: A type 2 QSO in a cooling flow
IRAS 09104+4109 is a rare example of a dust enshrouded type 2 QSO in the
centre of a cool-core galaxy cluster. Previous observations of this z=0.44
system showed that as well as powering the hyper-luminous infrared emission of
the cluster-central galaxy, the QSO is associated with a double-lobed radio
source. However, the steep radio spectral index and misalignment between the
jets and ionised optical emission suggested that the orientation of the QSO had
recently changed. We use a combination of new, multi-band Giant Metrewave Radio
Telescope observations and archival radio data to confirm that the jets are no
longer powered by the QSO, and estimate their age to be 120-160 Myr. This is in
agreement with the ~70-200 Myr age previously estimated for star-formation in
the galaxy. Previously unpublished Very Long Baseline Array data reveal a 200
pc scale double radio source in the galaxy core which is more closely aligned
with the current QSO axis and may represent a more recent period of jet
activity. These results suggest that the realignment of the QSO, the cessation
of jet activity, and the onset of rapid star-formation may have been caused by
a gas-rich galaxy merger. A Chandra X-ray observation confirms the presence of
cavities associated with the radio jets, and we estimate the energy required to
inflate them to be ~7.7x10^60 erg. The mechanical power of the jets is
sufficient to balance radiative cooling in the cluster, provided they are
efficiently coupled to the intra-cluster medium (ICM). We find no evidence of
direct radiative heating and conclude that the QSO either lacks the radiative
luminosity to heat the ICM, or that it requires longer than 100-200 Myr to
significantly impact its environment. [Abridged]Comment: 23 pages, 18 figures and 7 tables. Accepted for publication in MNRA
Variation in herbivore space use: comparing two savanna ecosystems with different anthrax outbreak patterns in southern Africa
Abstract
Background
The distribution of resources can affect animal range sizes, which in turn may alter infectious disease dynamics in heterogenous environments. The risk of pathogen exposure or the spatial extent of outbreaks may vary with host range size. This study examined the range sizes of herbivorous anthrax host species in two ecosystems and relationships between spatial movement behavior and patterns of disease outbreaks for a multi-host environmentally transmitted pathogen.
Methods
We examined range sizes for seven host species and the spatial extent of anthrax outbreaks in Etosha National Park, Namibia and Kruger National Park, South Africa, where the main host species and outbreak sizes differ. We evaluated host range sizes using the local convex hull method at different temporal scales, within-individual temporal range overlap, and relationships between ranging behavior and species contributions to anthrax cases in each park. We estimated the spatial extent of annual anthrax mortalities and evaluated whether the extent was correlated with case numbers of a given host species.
Results
Range size differences among species were not linearly related to anthrax case numbers. In Kruger the main host species had small range sizes and high range overlap, which may heighten exposure when outbreaks occur within their ranges. However, different patterns were observed in Etosha, where the main host species had large range sizes and relatively little overlap. The spatial extent of anthrax mortalities was similar between parks but less variable in Etosha than Kruger. In Kruger outbreaks varied from small local clusters to large areas and the spatial extent correlated with case numbers and species affected. Secondary host species contributed relatively few cases to outbreaks; however, for these species with large range sizes, case numbers positively correlated with outbreak extent.
Conclusions
Our results provide new information on the spatiotemporal structuring of ranging movements of anthrax host species in two ecosystems. The results linking anthrax dynamics to host space use are correlative, yet suggest that, though partial and proximate, host range size and overlap may be contributing factors in outbreak characteristics for environmentally transmitted pathogens
- …