218 research outputs found

    Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records

    Get PDF
    Pollen-based climate reconstructions were performed on two high-resolution pollen marines cores from the Alboran and Aegean Seas in order to unravel the climatic variability in the coastal settings of the Mediterranean region between 15 000 and 4000 years BP (the Lateglacial, and early to mid-Holocene). The quantitative climate reconstructions for the Alboran and Aegean Sea records focus mainly on the reconstruction of the seasonality changes (temperatures and precipitation), a crucial parameter in the Mediterranean region. This study is based on a multi-method approach comprising 3 methods: the Modern Analogues Technique (MAT), the recent Non-Metric Multidimensional Scaling/Generalized Additive Model method (NMDS/GAM) and Partial Least Squares regression (PLS). The climate signal inferred from this comparative approach confirms that cold and dry conditions prevailed in the Mediterranean region during the Oldest and Younger Dryas periods, while temperate conditions prevailed during the Bølling/Allerød and the Holocene. Our records suggest a West/East gradient of decreasing precipitation across the Mediterranean region during the cooler Late-glacial and early Holocene periods, similar to present-day conditions. Winter precipitation was highest during warm intervals and lowest during cooling phases. Several short-lived cool intervals (i.e. Older Dryas, another oscillation after this one (GI-1c2), Gerzensee/Preboreal Oscillations, 8.2 ka event, Bond events) connected to the North Atlantic climate system are documented in the Alboran and Aegean Sea records indicating that the climate oscillations associated with the successive steps of the deglaciation in the North Atlantic area occurred in both the western and eastern Mediterranean regions. This observation confirms the presence of strong climatic linkages between the North Atlantic and Mediterranean regions

    Junior Students’ with Hearing Impairment Psychological Correction of Learning Motivation Development

    Get PDF
    У статті розглянуто основні методологічні принципи, методи, етапи корекційного процесу. Обґрунтовано використання гуманістичного підходу до корекції мотиваційної сфери учіння та підібрано комплекс корекційних завдань для розвитку цієї сфери в молодших школярів із порушеннями слуху. The article presents basic methodological principles, methods, main stages of correctional process. A humanitarian approach to learning motivation development correction has been grounded and a complex of correctional tasks for junior students with hearing impairment has been selected

    New key-tools for pollen identification in research and education

    Get PDF
    Pollen ID offers a free and easy access to various palynological information and compiles in the same web-space a pollen database and different services through a friendly user interface. Pollen ID proposes, or will propose, pollen and plant descriptions, terminology learning with an illustrated glossary and interactive images, identification keys, pollen analysis, pollen diagram construction, links with vegetation and climate data. The Pollen ID project is presently restricted to the European and Mediterranean geographical area, but it will be extended to other regions as well. This project is still in progress; its content and user interface – presently in French - will be soon available in English. In its final shape, the Pollen ID project will include palynological applications such as pollen determination tests, several original pollen analysis exercises with representations in diagrams and an easy interpretation of vegetation and climate. Pollen ID is accessible on http://lisupmc. snv.jussieu.fr/pollen/

    Holocene climate variability of the Western Mediterranean: surface water dynamics inferred from calcareous plankton assemblages

    Get PDF
    A high-resolution study (centennial scale) has been performed on the calcareous plankton assemblage of the Holocene portion of the Ocean Drilling Program Site 976 (Alboran Sea) with the aim to identify the main changes in the surface water dynamic. The dataset also provided a seasonal foraminiferal sea surface water temperatures (SSTs), estimated using the modern analog technique SIMMAX 28, and it was compared with available geochemical and pollen data at the site. Three main climate shifts were identified as (1) the increase in abundance of Syracosphaera spp. and Turborotalita quinqueloba marks the early Holocene humid phase, during maximum summer insolation and enhanced river runoff. It is concomitant with the expansion of Quercus, supporting high humidity on land. It ends at 8.2 ka, registering a sudden temperature and humidity reduction; (2) the rise in the abundances of Florisphaera profunda and Globorotalia inflata, at ca. 8 ka, indicates the development of the modern geostrophic front, gyre circulation, and of a deep nutricline following the sea-level rise; and (3) the increase of small Gephyrocapsa and Globigerina bulloides at 5.3 ka suggests enhanced nutrient availability in surface waters, related to more persistent wind-induced upwelling conditions. Relatively higher winter SST in the last 3.5 ka favored the increase of Trilobatus sacculifer, likely connected to more stable surface water conditions. Over the main trends, a short-term cyclicity is registered in coccolithophore productivity during the last 8 ka. Short periods of increased productivity are in phase with Atlantic waters inflow, and more arid intervals on land. This cyclicity has been related with periods of positive North Atlantic Oscillation (NAO) circulations. Spectral analysis on coccolithophore productivity confirms the occurrence of millennial-scale cyclicity, suggesting an external (i.e. solar) and an internal (i.e. atmospheric/oceanic) forcing.Geoscience PhD scholarship, Universita degli Studi di BariPotenziamento Strutturale dell'Universita degli Studi di Bari, Laboratorio per lo Sviluppo Integrato delle Scienze e delle Tecnologie dei Materiali Avanzati e per dispositivi innovativi (SISTEMA) [PONa3_00369]Fundacao para a Ciencia e a Tecnologia (FCT)Portuguese Foundation for Science and TechnologyEuropean Commission [SFRH/BPD/111433/2015]info:eu-repo/semantics/submittedVersio

    Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparison

    Get PDF
    Climate evolution of the Mediterranean region during the Holocene exhibits strong spatial and temporal variability. The spatial differentiation and temporal variability, as evident from different climate proxy datasets, has remained notoriously difficult for models to reproduce. In light of this complexity, we examine the previously described evidence for (i) opposing northern and southern precipitation regimes during the Holocene across the Mediterranean basin, and (ii) an east-to-west precipitation gradient or dipole during the early Holocene, from a wet eastern Mediterranean to dry western Mediterranean. Using quantitative climate information from marine and terrestrial pollen archives, we focus on two key time intervals, the early to mid-Holocene (8000 to 6000 cal yrs BP) and the late Holocene (4000 to 2000 yrs BP), in order to test the above mentioned hypotheses on a Mediterranean-wide scale. Palynologically derived climate information is compared with the output of regional-scale climate-model simulations for the same time intervals. Quantitative pollen-based precipitation estimates were generated along a longitudinal gradient from the Alboran (West) to the Aegean Sea (East); they are derived from terrestrial pollen records from Greece, Italy and Malta as well as from pollen records obtained from marine cores. Because seasonality represents a key parameter in Mediterranean climates, special attention was given to the reconstruction of season-specific climate information, notably summer and winter precipitation. The reconstructed climatic trends corroborate a previously described north-south partition of precipitation regimes during the Holocene. During the early Holocene, relatively wet conditions occurred in the south-central and eastern Mediterranean region, while drier conditions prevailed from 45° N northwards. These patterns reversed during the late Holocene, with a wetter northern Mediterranean region and drier conditions in the east and south. More sites from the northern part of the Mediterranean basin are needed to further substantiate these observations. With regard to the existence of a west-east precipitation dipole during the Holocene, our pollen-based climate data show that the strength of this dipole is strongly linked to the seasonal parameter reconstructed: Early Holocene summers show a clear east-to-west gradient, with summer precipitation having been highest in the central and eastern Mediterranean and lowest over the western Mediterranean. In contrast, winter precipitation signals are less spatially coherent. A general drying trend occurred from the early to the late Holocene; particularly in the central and eastern Mediterranean. However, summer precipitation in the east remained above modern values, even during the late Holocene interval. Pollen-inferred precipitation estimates were compared to regional-scale climate modelling simulations based on the HadAM3 GCM coupled to the dynamic HadSM3 and the high-resolution regional HadRM3 models. Climate model outputs and pollen-inferred precipitation estimates show remarkably good overall correspondence, although many simulated patterns are of marginal statistical significance. Nevertheless, models weakly support an east to west division in summer precipitation and there are suggestions that the eastern Mediterranean experienced wetter summer and winter conditions during the early Holocene and wetter summer conditions during the late Holocene. The extent to which summer monsoonal precipitation may have existed in the southern and eastern Mediterranean during the mid-Holocene remains an outstanding question; our model, consistent with other global models, does not suggest an extension of the African monsoon into the Mediterranean. Given the difficulty in modelling future climate change in Southern Europe, more simulations based on high resolution global models and very high resolution regional downscaling, perhaps even including transient simulations, are required to fully understand the patterns of change in winter and summer circulation patterns over the Mediterranean regio

    European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials

    Get PDF
    Quantitative reconstructions of past land cover are necessary to determine the processes involved in climate-human-land-cover interactions. We present the first temporally continuous and most spatially extensive pollen-based land-cover reconstruction for Europe over the Holocene (last 11 700 cal yr BP). We describe how vegetation cover has been quantified from pollen records at a 1 degrees x 1 degrees spatial scale using the "Regional Estimates of VEgetation Abundance from Large Sites" (REVEALS) model. REVEALS calculates estimates of past regional vegetation cover in proportions or percentages. REVEALS has been applied to 1128 pollen records across Europe and part of the eastern Mediterranean-Black Sea-Caspian corridor (30-75 degrees N, 25 degrees W-50 degrees E) to reconstruct the percentage cover of 31 plant taxa assigned to 12 plant functional types (PFTs) and 3 land-cover types (LCTs). A new synthesis of relative pollen productivities (RPPs) for European plant taxa was performed for this reconstruction. It includes multiple RPP values (>= 2 values) for 39 taxa and single values for 15 taxa (total of 54 taxa). To illustrate this, we present distribution maps for five taxa (Calluna vulgaris, Cerealia type (t)., Picea abies, deciduous Quercus t. and evergreen Quercus t.) and three land-cover types (open land, OL; evergreen trees, ETs; and summer-green trees, STs) for eight selected time windows. The reliability of the REVEALS reconstructions and issues related to the interpretation of the results in terms of landscape openness and human-induced vegetation change are discussed. This is followed by a review of the current use of this reconstruction and its future potential utility and development. REVEALS data quality are primarily determined by pollen count data (pollen count and sample, pollen identification, and chronology) and site type and number (lake or bog, large or small, one site vs. multiple sites) used for REVEALS analysis (for each grid cell). A large number of sites with high-quality pollen count data will produce more reliable land-cover estimates with lower standard errors compared to a low number of sites with lower-quality pollen count data. The REVEALS data presented here can be downloaded from https://doi.org/10.1594/PANGAEA.937075 (Fyfe et al., 2022)

    European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials

    Get PDF
    Quantitative reconstructions of past land cover are necessary to determine the processes involved in climate-human-land-cover interactions. We present the first temporally continuous and most spatially extensive pollen-based land-cover reconstruction for Europe over the Holocene (last 11 700 cal yr BP). We describe how vegetation cover has been quantified from pollen records at a 1 degrees x 1 degrees spatial scale using the "Regional Estimates of VEgetation Abundance from Large Sites" (REVEALS) model. REVEALS calculates estimates of past regional vegetation cover in proportions or percentages. REVEALS has been applied to 1128 pollen records across Europe and part of the eastern Mediterranean-Black Sea-Caspian corridor (30-75 degrees N, 25 degrees W-50 degrees E) to reconstruct the percentage cover of 31 plant taxa assigned to 12 plant functional types (PFTs) and 3 land-cover types (LCTs). A new synthesis of relative pollen productivities (RPPs) for European plant taxa was performed for this reconstruction. It includes multiple RPP values (>= 2 values) for 39 taxa and single values for 15 taxa (total of 54 taxa). To illustrate this, we present distribution maps for five taxa (Calluna vulgaris, Cerealia type (t)., Picea abies, deciduous Quercus t. and evergreen Quercus t.) and three land-cover types (open land, OL; evergreen trees, ETs; and summer-green trees, STs) for eight selected time windows. The reliability of the REVEALS reconstructions and issues related to the interpretation of the results in terms of landscape openness and human-induced vegetation change are discussed. This is followed by a review of the current use of this reconstruction and its future potential utility and development. REVEALS data quality are primarily determined by pollen count data (pollen count and sample, pollen identification, and chronology) and site type and number (lake or bog, large or small, one site vs. multiple sites) used for REVEALS analysis (for each grid cell). A large number of sites with high-quality pollen count data will produce more reliable land-cover estimates with lower standard errors compared to a low number of sites with lower-quality pollen count data. The REVEALS data presented here can be downloaded from https://doi.org/10.1594/PANGAEA.937075 (Fyfe et al., 2022)

    European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials

    Get PDF
    Quantitative reconstructions of past land cover are necessary to determine the processes involved in climate-human-land-cover interactions. We present the first temporally continuous and most spatially extensive pollen-based land-cover reconstruction for Europe over the Holocene (last 11 700 cal yr BP). We describe how vegetation cover has been quantified from pollen records at a 1 degrees x 1 degrees spatial scale using the "Regional Estimates of VEgetation Abundance from Large Sites" (REVEALS) model. REVEALS calculates estimates of past regional vegetation cover in proportions or percentages. REVEALS has been applied to 1128 pollen records across Europe and part of the eastern Mediterranean-Black Sea-Caspian corridor (30-75 degrees N, 25 degrees W-50 degrees E) to reconstruct the percentage cover of 31 plant taxa assigned to 12 plant functional types (PFTs) and 3 land-cover types (LCTs). A new synthesis of relative pollen productivities (RPPs) for European plant taxa was performed for this reconstruction. It includes multiple RPP values (>= 2 values) for 39 taxa and single values for 15 taxa (total of 54 taxa). To illustrate this, we present distribution maps for five taxa (Calluna vulgaris, Cerealia type (t)., Picea abies, deciduous Quercus t. and evergreen Quercus t.) and three land-cover types (open land, OL; evergreen trees, ETs; and summer-green trees, STs) for eight selected time windows. The reliability of the REVEALS reconstructions and issues related to the interpretation of the results in terms of landscape openness and human-induced vegetation change are discussed. This is followed by a review of the current use of this reconstruction and its future potential utility and development. REVEALS data quality are primarily determined by pollen count data (pollen count and sample, pollen identification, and chronology) and site type and number (lake or bog, large or small, one site vs. multiple sites) used for REVEALS analysis (for each grid cell). A large number of sites with high-quality pollen count data will produce more reliable land-cover estimates with lower standard errors compared to a low number of sites with lower-quality pollen count data. The REVEALS data presented here can be downloaded from https://doi.org/10.1594/PANGAEA.937075 (Fyfe et al., 2022)

    The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Get PDF
    Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard–Oeschger (D–O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D–O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73–15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U∕230Th, optically stimulated luminescence (OSL), 40Ar∕39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867

    European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials

    Get PDF
    Quantitative reconstructions of past land cover are necessary to determine the processes involved in climate–human–land-cover interactions. We present the first temporally continuous and most spatially extensive pollen-based land-cover reconstruction for Europe over the Holocene (last 11 700 cal yr BP). We describe how vegetation cover has been quantified from pollen records at a 1∘ × 1∘ spatial scale using the “Regional Estimates of VEgetation Abundance from Large Sites” (REVEALS) model. REVEALS calculates estimates of past regional vegetation cover in proportions or percentages. REVEALS has been applied to 1128 pollen records across Europe and part of the eastern Mediterranean–Black Sea–Caspian corridor (30–75∘ N, 25∘ W–50∘ E) to reconstruct the percentage cover of 31 plant taxa assigned to 12 plant functional types (PFTs) and 3 land-cover types (LCTs). A new synthesis of relative pollen productivities (RPPs) for European plant taxa was performed for this reconstruction. It includes multiple RPP values (≥2 values) for 39 taxa and single values for 15 taxa (total of 54 taxa). To illustrate this, we present distribution maps for five taxa (Calluna vulgaris, Cerealia type (t)., Picea abies, deciduous Quercus t. and evergreen Quercus t.) and three land-cover types (open land, OL; evergreen trees, ETs; and summer-green trees, STs) for eight selected time windows. The reliability of the REVEALS reconstructions and issues related to the interpretation of the results in terms of landscape openness and human-induced vegetation change are discussed. This is followed by a review of the current use of this reconstruction and its future potential utility and development. REVEALS data quality are primarily determined by pollen count data (pollen count and sample, pollen identification, and chronology) and site type and number (lake or bog, large or small, one site vs. multiple sites) used for REVEALS analysis (for each grid cell). A large number of sites with high-quality pollen count data will produce more reliable land-cover estimates with lower standard errors compared to a low number of sites with lower-quality pollen count data. The REVEALS data presented here can be downloaded from https://doi.org/10.1594/PANGAEA.937075 (Fyfe et al., 2022)
    corecore