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Abstract  23 

A high resolution study (centennial-scale) has been performed on the calcareous plankton assemblage 24 

of the Holocene portion of the Ocean Drilling Program Site 976 (Alboran Sea) with the aim to identify 25 

main changes in surface water dynamic. The dataset also provided a Seasonal foraminiferal Sea 26 

Surface Water Temperatures (SSTs), estimated using the modern analog technique SIMMAX 28, and 27 

it was compared with available geochemical and pollen data at the site. 28 

Three main climate shifts were identified: I) The increase in abundance of Syracosphaera spp. and 29 

Turborotalita quinqueloba marks the early Holocene humid phase, during maximum summer 30 

insolation and enhanced river runoff. It is concomitant with the expansion of Quercus, supporting 31 

high humidity on land. It ends at 8.2 ka, registering a sudden temperature and humidity reduction; II) 32 

The rise in the abundances of Florisphaera profunda and Globorotalia inflata, at ca. 8 ka, indicates 33 

the development of the modern geostrophic front, gyre circulation and of a deep nutricline following 34 

the sea-level rise; III) The increase of small Gephyrocapsa and Globigerina bulloides at 5.3 ka, 35 
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suggests enhanced nutrient availability in surface waters, related to more persistent wind-induced 36 

upwelling conditions. Relatively higher winter SST in the last 3.5 kyr favored the increase of 37 

Trilobatus sacculifer, likely connected to more stable surface water conditions. Over the main trends, 38 

a short term cyclicity is registered in coccolithophore productivity during the last 8 kyr. Short periods 39 

of increased productivity are in phase with Atlantic waters inflow, and more arid intervals on land. 40 

This cyclicity has been related with periods of positive North Atlantic Oscillation (NAO) circulations. 41 

Spectral analysis on coccolithophore productivity confirms the occurrence of millennial-scale 42 

cyclicity suggesting an external (i.e. solar) and an internal (i.e. atmospheric/oceanic) forcing.  43 

 44 

Introduction 45 

An increasing number of climate records reveals that the Holocene has experienced a pervasive 46 

millennial- and centennial-scale climate variability (e.g. Jalut et al., 2009; Magny et al., 2013; 47 

Mayewski et al., 2004; Walker et al., 2012; Wanner et al., 2015), well-documented in both the North 48 

Atlantic (e.g. Bond et al., 2001; Repschläger et al., 2017; Thornalley et al., 2009) and western 49 

Mediterranean (e.g. Ausín et al., 2015a; Cacho et al., 2001; Català et al., 2018; Frigola et al., 2007; 50 

Jalali et al., 2017, 2016; Nieto-Moreno et al., 2015; Rodrigo-Gámiz et al., 2011). The western 51 

Mediterranean Sea is in fact extremely sensitive to the changes experienced in the North Atlantic and 52 

is an ideal location for high-frequency climatic investigations, because water mass properties changes 53 

and oceanographic and atmospheric circulation oscillations are usually amplified (Cacho et al., 1999, 54 

2001; Català et al., 2018; Frigola et al., 2007, 2008; Jalali et al., 2016; Moreno et al., 2002; Nieto-55 

Moreno et al., 2015; Sierro et al., 2005; Toucanne et al., 2012). The millennial-scale climate 56 

variability in the western Mediterranean is reflected in different water column configurations and 57 

oceanographic features (e.g. fronts and eddies) that left a clear signature in the calcareous plankton 58 

assemblages (Ausín et al., 2015a; Pérez-Folgado et al., 2003, 2004; Sbaffi et al., 2001). During the 59 

Holocene, the Alboran Sea experienced relevant oceanographic perturbations, the most important of 60 

which was the instauration of the modern geostrophic front and establishment of gyre anticyclonic 61 

circulation dynamics, following sea level rising after the last deglaciation (Ausín et al., 2015b; Català 62 

et al., 2018; Colmenero-Hidalgo et al., 2004; Heburn and La Violette, 1990; Rohling et al., 1995; 63 

Weaver and Pujol, 1988). This important change also marked the end of the Organic Rich Layer 1 64 

(ORL1) deposition in the western Mediterranean (Bárcena et al., 2001; Cacho et al., 2002; Jimenez-65 

Espejo et al., 2007, 2008; Rogerson et al., 2008). Targeting the high frequency oscillations 66 

experienced during the Holocene, a growing attention has been focused on the impact of the North 67 

Atlantic Oscillation (NAO) atmospheric pattern in the western Mediterranean Sea, in terms of 68 

westerlies strength and deep water production, precipitation and river runoff, and coccolithophore 69 
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productivity (Ausín et al., 2015a; Fletcher et al., 2012; Frigola et al., 2007; Jalali et al., 2016; Moreno 70 

et al., 2005; Smith et al., 2016; Trigo et al., 2004; Zielhofer et al., 2017). However, only a few studies 71 

so far have documented the relationship between coccolithophore productivity and atmospheric 72 

variability, like the present NAO index (e.g. Ausín et al., 2015a).  73 

In this framework we carried out, over the last 12 ka, at the Ocean Drilling Program (ODP) Site 976, 74 

an integrated study between coccolithophores and planktonic foraminifera by a centennial-scale 75 

resolution, not available so far in the Alboran Sea. The aim was to reconstruct paleoenvironmental 76 

fluctuations in the Alboran Sea and to discuss the mechanisms controlling fossil assemblage and 77 

productivity variations at different time scales. A planktonic foraminifera-based Sea Surface 78 

Temperature (SST) reconstruction is also provided, to have further insights on seasonal and annual 79 

temperature variations. In addition, spectral and wavelet analyses of the coccolithophore 80 

accumulation rates are performed to identify the different periodicities of coccolithophore 81 

productivity fluctuations. The study also benefits from the comparison with additional inorganic and 82 

organic geochemical proxies (Jiménez-Amat and Zahn, 2015; Martrat et al., 2014) and pollen data 83 

(Combourieu-Nebout et al., 2009) available at the same site, improving the paleoclimate 84 

reconstruction through a direct multi-proxy approach.  85 

 86 

Area of Study 87 

Present hydrographical conditions 88 

The ODP Site 976 was recovered off the Spanish coast in the Alboran Sea, the westernmost basin of 89 

the Mediterranean Sea, bordering the Atlantic Ocean (Fig. 1). Surrounding lands include the high 90 

physiography of the Betic cordillera and Moroccan Rif mountains, that might provide a certain 91 

riverine input, although subjected to high seasonality and extreme climatic events (Jimenez-Espejo 92 

et al., 2008; Liquete et al., 2005; Lobo et al., 2006). Surface Atlantic Water (AW) pours inside the 93 

Alboran basin through the Strait of Gibraltar, as a constant stream of surface low-salinity waters 94 

called the Atlantic Jet (AJ). The latter contributes to the creation of two quasi-permanent meso-scale 95 

anticyclonic gyres: the Western Anticyclonic Gyre (WAG) and the Eastern Anticyclonic Gyre (EAG) 96 

(Fig. 1) (Heburn and La Violette, 1990; Sarhan et al., 2000). In the area, two mechanisms are known 97 

to be relevant for the upwelling dynamic: the southward drifting of the AJ, that would allow the water 98 

from below to rise, and the wind stress (Sarhan et al., 2000). The influence of the vertical mixing of 99 

AJ and deeper Mediterranean waters, concurrently with the complex bottom topography, forms areas 100 

of geostrophic front and quasi-permanent upwelling: the Alboran front and the Almeria-Oran front 101 

(Fig.1) (Perkins et al., 1990; Viúdez et al., 1996). 102 
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The combination of gyres and upwelling fronts results in increased nutrient availability and high 103 

productivity waters, among the richest within the rest of the Mediterranean (D’Ortenzio and 104 

D’Alcalà, 2009; Garcia-Gorriz and Carr, 1999). Counteracting the AW inflow, the denser and more 105 

saline Mediterranean waters exit the basin through the Mediterranean Outflow Water (MOW), that 106 

includes the western Mediterranean Deep Water (WMDW) from the Gulf of Lion and the Levantine 107 

Intermediate Water (LIW) from the far East of the Mediterranean basin (Fig. 1) (Millot, 2008; Perkins 108 

et al., 1990). Deep water formation is controlled by surface heat loss due to winds blowing from the 109 

north and north-west (Font et al., 2007; Mertens and Schott, 1998; Rixen et al., 2005; Smith et al., 110 

2008).  111 

 112 

Present Climate Conditions  113 

The Alboran Sea climate conditions are under the influence of the Azores high pressure cell and its 114 

seasonal latitudinal shift, resulting in mild wet winters and dry hot summers (Lionello, 2012; Moreno 115 

et al., 2012; Rohling et al., 2015; Sumner et al., 2001). At decadal and inter-annual time scales, 116 

atmospheric variability is regulated by the North Atlantic Oscillation (NAO) index, which is 117 

characterized by positive (NAO+) and negative (NAO-) regimes (Hurrell, 1995; Olsen et al., 2012; 118 

Smith et al., 2016; Trigo et al., 2004). During a NAO+ regime, stronger pressure difference between 119 

the Azores High and Icelandic Low atmospheric cells brings storm trajectories to the north, 120 

determining stormier and wetter weather in northwest Europe and dryer winters in southern Europe 121 

and North Africa (Olsen et al., 2012; Smith et al., 2016; Zielhofer et al., 2017). At NAO- regime, 122 

weaker difference between the two pressure cells leads storm tracks to the south, enhancing 123 

precipitations over southern Europe and North Africa (Smith et al., 2016; Wanner et al., 2015). In the 124 

Iberian Peninsula, winter precipitation mode has been related to air masses raised by atmospheric 125 

instabilities and moisture supply from the tropical-subtropical North Atlantic corridor (Gimeno et al., 126 

2010). 127 

 128 

Materials and Methods 129 

Core material and available data sets 130 

The ODP Site 976 (Comas et al., 1996) is located about 60 km south of the Iberian Peninsula and 131 

about 110 km East of the Strait of Gibraltar (36°12.3′ N, 4°18.7′ W) (Fig. 1). The cores were recovered 132 

on the lower part of a very gentle slope, dipping southward of the Spanish margin in the Alboran 133 

Basin, at a depth of 1108 m. The investigated sediments are from Hole C – Core 1H – sections 1-3 134 

(Comas et al., 1996), between 0.07 to 4.03 m below the sea floor. Main lithology is composed of 135 

nannofossil rich clay, with slight to moderate bioturbation and common shell fragments (Comas et 136 
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al., 1996). One Organic Rich Layer (ORL) occurs in the studied interval and is identified on the basis 137 

of the maximum accumulation of di- and tri- alkenones of 37 carbons (Martrat et al., 2004, 2014). 138 

The age model used in the present study is from Martrat et al. (2014), based on available 14C calibrated 139 

AMS radiocarbon dates (Combourieu-Nebout et al., 2002, 2009).  Sampling resolution of calcareous 140 

plankton dataset varies between 1 sample every 2 to 6 cm, according to the variable sedimentation 141 

rate (20 to 60 cm), thus providing a temporal resolution of one sample every ca. 100 years.  142 

 143 

Calcareous plankton  144 

The coccolith assemblages were analyzed in 129 samples. Sample preparation for the coccolith 145 

analysis follows the random settling technique by Flores and Sierro (1997). The quantitative analyses 146 

were performed using a polarized light microscopy at 1000X magnification. The relative abundance 147 

of taxa was estimated counting at least 500 specimens per sample, in variable fields of view. 148 

Reworked calcareous nannofossils were estimated separately during this counting. The absolute 149 

abundance of taxa is expressed as Nannofossil Accumulation Rate (NAR). The total NAR, used to 150 

determine coccolithophore paleoproductivity (Baumann et al., 2004; Steinmetz, 1994), was estimated 151 

following Flores and Sierro (1997): 152 

NAR = N * w * S 153 

where N is the number of coccoliths per gram of sediment (Ng− 1), w is the wet bulk density (g×cm−3) 154 

(shipboard bulk density data, Comas et al., 1996), and S is the sedimentation rate (cm×ky− 1). Wet 155 

bulk density is frequently used as a substitute to dry bulk density, in the absence of the latter, to 156 

estimate coccolithophore production (Grelaud et al., 2009; Marino et al., 2014; Stolz and Baumann, 157 

2010). For taxonomic identification we referred to Young et al. (2003) and Jordan et al. (2004). 158 

According to Flores et al. (2000): gephyrocapsids with high angle bridge (>50°) and >3 μm in size 159 

are indicated as Gephyrocapsa oceanica; gephyrocapsids >3 μm in size with a low angle bridge (< 160 

25°) are indicated as Gephyrocapsa muellerae; small Gephyrocapsa includes gephyrocapsids < 3μm 161 

in size. Specimens of Emiliania huxleyi were differentiated into two main groups following size 162 

criteria (Colmenero-Hidalgo et al., 2002): large E. huxleyi > 4 μm and small E. huxleyi < 4 μm.  Warm 163 

water taxa are grouped according to their ecological preference for tropical-subtropical waters 164 

(Baumann et al., 2004; Boeckel and Baumann, 2004; Winter and Siesser, 1994). The group includes: 165 

Calciosolenia spp., Discosphaera tubifera, Rhabdosphaera stylifera, Rhabdosphaera clavigera, 166 

Umbilicosphaera foliosa, Umbilicosphaera sibogae, Umbellosphaera spp., Oolithotus spp. 167 

Planktonic foraminifera assemblages were analyzed in 122 samples washed through 63 and 150μm 168 

sieves. The residues (>150μm) were split, until a representative aliquot containing about 300 169 

specimens has been obtained. All specimens were counted in the aliquots and species abundances 170 
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were quantified as percentages on the total number of planktonic foraminifers (relative abundance) 171 

and as absolute abundances expressed as planktonic foraminifera Accumulation Rates (pfAR). The 172 

pfAR has been calculated following Giraudeau et al. (2001):  173 

pfAR = AA * w * S 174 

where AA is the number of specimens per gram of dry sediment (nr/g), w is the wet bulk density 175 

(g×cm−3) (shipboard bulk density data, Comas et al., 1996), and S is the sedimentation rate (cm×ky−1). 176 

Sixteen species or species groups were distinguished. Globigerinoides ruber includes morphotypes 177 

of G. ruber white, and Globigerinoides elongatus (sensu Aurahs et al., 2011); Trilobatus sacculifer 178 

includes Trilobatus trilobus, Trilobatus sacculifer and Trilobatus quadrilobatus (sensu André et al., 179 

2012; Hemleben et al., 1989; Spezzaferri et al., 2015). Globoturborotalita rubescens includes 180 

Globoturborotalita tenella because of their similar ecological preference (Capotondi et al., 1999). 181 

The taxonomy of Neogloboquadrina spp. follows criteria by Darling et al., (2006): 182 

Neogloboquadrina incompta includes specimens previously referred to N. pachyderma (dextral) and 183 

intergrades between N. pachyderma (dextral) and N. dutertrei. Neogloboquadrina pachyderma only 184 

includes the left coiling specimens. 185 

According to their ecological preference (Hemleben et al., 1985; Kucera et al., 2005; Pujol and 186 

Vergnaud-Grazzini, 1995) and to previous Mediterranean Sea paleoclimatic reconstructions (De Rijk 187 

et al., 1999; Rohling et al., 1997), G. ruber, T. sacculifer, Hastigerina pelagica, G. rubescens, 188 

Orbulina universa, Beella digitata and Globigerinella siphonifera have been grouped as warm water 189 

taxa. 190 

 191 

Sea Surface Temperature estimation  192 

Planktic foraminifera assemblages were used to reconstruct annual, summer (July to September) and 193 

winter (January to March) SST with the modern analog technique non distance-weighted SIMMAX 194 

28 and 10 analogs (Pflaumann et al., 1996). Considering that the study site is influenced by Atlantic 195 

and Mediterranean ocean circulation, following Schirrmacher et al. (2019), we use the combined 196 

North Atlantic core-top database (Kucera et al., 2005; Salgueiro et al., 2010, 2014) and the 197 

Mediterranean database (Hayes et al., 2005), and the root mean square error of both annual and 198 

seasonal SST reconstructions is about 1.3ºC (Schirrmacher et al., 2019).  199 

 200 

Power spectral and wavelet analysis 201 

Spectral and wavelet analyses were performed on the total NAR, displaying relevant high frequency 202 

oscillations throughout the record. The analysis of the non-stationary (frequency changes along time) 203 

and non-linear signals, was performed by applying the Empirical Mode Decomposition algorithm 204 
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(EMD) of Huang et al. (1998) in order to decompose multi-component signals into a series of 205 

amplitude and frequency modulation (AM-FM) waves, each with slowly varying amplitude and 206 

phase. A major advantage of EMD is that the basis functions are derived from the signal itself, hence 207 

the analysis is adaptive, in contrast to the traditional methods where the basis functions are fixed as 208 

sine and cosine for Fourier transform like methods and the mother wavelet functions for wavelet 209 

analysis. 210 

The signal and the Intrinsic Mode Functions (IMF) components are analysed without interpolation, 211 

keeping the original evenly sampling intervals, with:  212 

1. “REDFIT”, that computes the spectrum of a possibly unevenly sampled time-series, by using 213 

the Lomb-Scargle Fourier transform. The spectrum is bias-corrected using spectra computed 214 

from simulated AR(1) series and the theoretical AR(1) spectrum (Lomb, 1976; Scargle, 1982; 215 

Schulz and Mudelsee, 2002).   216 

2.  Foster's (1996) weighted wavelet Z-transform (WWZ). To analyze non-stationary and 217 

irregularly sampled signals, we need an extension of the classic wavelet formalism. Foster 218 

(1996), who defines the WWZ, developed such extension as a suitable weighted projection 219 

method re-orthogonalizing the three basic functions (real and imaginary part of the Morlet 220 

wavelet and a constant) by rotating the matrix of their scalar products. Furthermore, he 221 

introduces statistical F-tests to distinguish between periodic components and a noisy 222 

background signal. 223 

 224 

Results 225 

Calcareous nannofossils  226 

Calcareous nannofossils are generally abundant and well preserved and dissolution phenomena seem 227 

not to be significant. Abundances of the most relevant taxa are presented in Fig. 2 and no major 228 

discrepancies are observed between relative and absolute trends. The total NAR ranges between 0.5 229 

x 1011 coccoliths x cm-2 x kyr-1 and 2 x 1011 coccoliths x cm-2 x kyr-1, with an average of 0.8 x 1011 230 

coccoliths x cm-2 x kyr-1(Fig. 2). A marked abundance peak occurs at about 8.2 ka, and an oscillating 231 

pattern is recorded in the last 8 kyr (Fig. 2). Considering the relative abundances of the taxa (%), E. 232 

huxleyi < 4 µm represents the main taxon, having percentages between 40 and 60% and the highest 233 

values between 10 and 8 ka (Fig. 2). Among gephyrocapsids, G. muellerae results to be the most 234 

abundant in the lower part of the record, with values reaching 30% of the assemblage, followed by a 235 

descending trend (Fig. 2). Small Gephyrocapsa show an increase in abundance from 8%, between 10 236 

and 7 ka, to 15% from 5.3 ka upward (Fig. 2). Gephyrocapsa oceanica, mainly represented by 237 

morphotypes larger than 5 µm, shows abundance fluctuations between 3 and 10% throughout the 238 
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Holocene (Fig. 2). Florisphaera profunda, although not a dominant component of the assemblages 239 

(with very few isolated peaks greater than 15%), shows a distinct pattern, with very low percentage 240 

values up to ~8 ka, that clearly increase upwards in fluctuating abundances (Fig. 2). Among less 241 

abundant taxa, Syracosphaera spp. (S. histrica and S. pulchra), having a mean value of 1%, show a 242 

distinct increase between 11 and 8 ka, reaching values of about 5% (Fig. 2). The warm water coccolith 243 

taxa have very low abundances throughout the succession, with a mean value of 2%; the group shows 244 

a gradual increase between 12 and 8 ka, and fluctuating pattern afterwards (Fig. 2). Helicosphaera 245 

carteri and E. huxleyi > 4 µm show a similar pattern with abundance values ranging between 10 and 246 

15% in the lowest part of the succession (during the Younger Dryas), followed by a clear decreasing 247 

trend, with values around 1% (Fig. 2). Other taxa, not showing particular trends or significant 248 

fluctuations, are represented by Coccolithus pelagicus ssp. pelagicus, Gephyrocapsa caribbeanica 249 

and Coronosphaera spp., with percentages not higher than 5%. Subordinate taxa do not exceed the 250 

3% of the assemblage and include Coccolithus pelagicus ssp. braarudii, Coccolithus pelagicus ssp. 251 

azorinus, Braarudosphaera bigelowii, Calcidiscus leptoporus ssp. small (3–5 μm), C. leptoporus ssp. 252 

leptoporus (5–8 μm), C. leptoporus ssp. quadriperforatus (8–10 μm), Ceratolithus spp., 253 

Helicosphaera pavimentum, Helicosphaera hyalina, Pontosphaera spp., Gladiolithus flabellatus, 254 

Scyphosphaera spp. and Umbilicosphaera hulburtiana. Reworked taxa occur in the samples with 255 

variable abundances, never exceeding about 4% (Fig. 2).  256 

 257 

Planktonic foraminifera assemblages 258 

Planktonic foraminifera are well preserved and diversified. Relative and absolute abundances of the 259 

most abundant/significant planktonic foraminifera taxa/ groups show comparable trends throughout 260 

the entire succession. Neogloboquadrina incompta and Turborotalita quinqueloba are abundant in 261 

the lower part of the record (between 12.5 ka and about 8 ka) and undergone a strong decreasing 262 

upward (Fig. 3). Although with lower relative and absolute abundances, G. ruber and G. bulloides 263 

are also abundant in this interval (Fig. 3). At about 8 ka, a prominent replacement of G. inflata at the 264 

expense of N. incompta and T. quinqueloba occurs. Starting from 8 ka upwards, G. inflata together 265 

with G. bulloides and G. ruber, became the most abundant taxon in the record (Fig. 3). Globigerinita 266 

glutinata, with relative abundances not higher than 10%, doesn’t show any relevant fluctuation in the 267 

distribution pattern (Fig. 3). Trilobatus sacculifer became more abundant from about 8 ka upward, 268 

showing a more prominent increase, as relative and absolute abundances, during the last 3.5 kyr (Fig. 269 

3). A similar distribution pattern is also shown by Truncorotalita truncatulinoides (Fig. 3). Other taxa 270 

showing a very scattered distribution in the studied interval, with relative abundances < 3 % and any 271 
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significant fluctuations, are not shown in Fig. 3. They are represented by Globorotalia scitula, 272 

Globigerina falconensis, G. rubescens, N. pachyderma, G. siphonifera and O. universa.  273 

 274 

Sea Surface Temperature 275 

Annual, summer and winter SST patterns show sharp fluctuations between 10.2 ka and 8.7 ka 276 

characterized by strong drops of winter and summer temperature values greater than 10°C (Fig. 3). 277 

During this interval an important increase of T. quinqueloba is observed, together with high 278 

occurrence of N. incompta and N. dutertrei and increasing trend of warm water foraminifera taxa 279 

(Fig. 5). In this interval, the similarity index slightly decreases (Fig. 3), indicating that this species 280 

combination is not usual in the modern oceanographic condition for the North Atlantic and the 281 

Mediterranean region. In this interval the average annual SST is about 13.9°C, while average winter 282 

and summer temperatures are 11.7°C and 16.7°C respectively (Fig. 3). For the last 8 kyr, the average 283 

annual SST is about 18.5°C, while winter SST in the Alboran Sea varies around ca. 15 °C, in 284 

agreement with modern conditions (15.4 °C; Locarnini et al., 2013) (Fig. 3). The average summer 285 

SST is 22.6°C, exceeding modern ones (21.4°C; Locarnini et al., 2013) (Fig. 3). Low temperatures 286 

values are recorded between about 8.6 and 7.7 ka both in summer (ca. 20°C) and in winter (ca.13°C) 287 

(Fig. 3). The highest temperatures are recorded between 7.7 ka and 5.8 ka with temperatures up to 23 288 

°C during summer and up to 16 °C during winter (Fig. 3). During the last 5 kyr, summer SST weakly 289 

decreases, with slightly oscillating values between 22°C and 23°C (Fig. 3). In the same interval, 290 

winter SSTs are almost stable with average values of about 15°C (Fig. 3), although during the last 3 291 

kyr, the winter temperatures are characterized by a slight increase. 292 

These results suggest that, with the exception of the interval between 10.2 and 8.7 ka, our SST record 293 

shows values comparable with those derived from the alkenone-SST at the same site (Martrat et al., 294 

2014), with the foram-based SST from other nearly records (Pérez-Folgado et al., 2003; Schirrmacher 295 

et al., 2019), and with the present-day SST in the region (Locarnini et al., 2013). On the basis of these 296 

considerations, only the last 8.6 kyr record has been considered for the climate interpretation.   297 

 298 

Power spectral and wavelet analysis 299 

The power spectrum of total NAR shows prominent peaks (over the 95% Confidence Level – C.L.) 300 

of periodicity ranging between 1100 yr and 1700 yr (IMF3) (Fig. 4a, c). The wavelet analysis reveals 301 

that periodicities are not evenly distributed through time and specifically the 1102 yr cycle occurs 302 

from 12 ka to about 4 ka (Fig. 4c), while the 1693 yr periodicity emerges since about 5 ka upwards 303 

(Fig. 4c). Significant peaks (over the 95% of C.L.) are observed at the periods of ~ 4300 yr and ~ 304 
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8000 yr all along the record (IMF 4, 5) (Fig. 4 d,e). Scattered distribution of cycles between ~ 400 305 

and ~ 700 yr are also observed (IMF 2) (Fig. 4b). 306 

 307 

Discussion 308 

Main hydrographic and climate variations  309 

Surface water modifications occurring in the last 11 ka can be described by three main long-term 310 

(between 3-5000 c.a. years-long) steps: Phase I, II and III (Figs. 5-6).  311 

 312 

Phase I – the early Holocene humid period 313 

This phase straddles the early Holocene, between 11.5 ka and 8 ka and is subsequent to the Younger 314 

Dryas Stadial. The climate evolution of the latter stadial has been discussed in detail in Bazzicalupo 315 

et al. (2018) based on the same proxies and therefore not discussed in the present study. Phase I is 316 

marked by a gradual surface water temperature increase, well described by progressively growing 317 

abundances of both coccolithophore and foraminifera warm-water taxa, associated with increasing 318 

summer insolation (Fig. 5). During this phase, the distinct increase in both Syrocosphaera spp. and 319 

T. quinqueloba (Fig. 5) provides evidences of enhanced riverine/detrital input in surface waters. 320 

Syracosphaera spp. has been, in fact, related to enhanced supply of fresher and turbid upper layer 321 

(Ausín, et al., 2015b; Bazzicalupo et al., 2018; Colmenero-Hidalgo et al., 2004; Weaver and Pujol, 322 

1988), while the cold taxon T. quinqueloba flourishes in high fertile and low density surface waters 323 

(Aksu et al., 2002; Hemleben et al., 1985; Pujol and Vergnaud-Grazzini, 1995; Triantaphyllou et al., 324 

2010). Enhanced abundances of this taxon have been also related to areas influenced by continental 325 

runoff (Bartels-Jónsdóttir et al., 2015; Girone et al., 2013; Jonkers et al., 2010; Margaritelli et al., 326 

2016; Rohling et al., 1997; Vallefuoco et al., 2012) and, in the Eastern Mediterranean, the increase in 327 

abundance of T. quinqueloba, during the deposition of sapropel layer S1, has been linked to a high 328 

tolerance for low salinity and highly stratified water conditions coupled with the presence of high 329 

nutrients and terrestrial organic material (Capotondi et al., 2004; Kontakiotis, 2016; Principato et al., 330 

2006; Rohling et al., 1997; Zachariasse et al., 1997). The high abundance of small Gephyrocapsa 331 

during phase I (Fig. 6), also sustains nutrient availability in surface water (Gartner et al., 1987; 332 

Hernández-Almeida et al., 2011; Okada and Wells, 1997; Takahashi and Okada, 2000). A 333 

concomitant expansion of Quercus during phase I (Fig. 5) highlights enhanced humidity on land 334 

(Combourieu-Nebout et al., 2009) likely in relation with extreme seasonality during precession 335 

minima/insolation maxima (Fig. 5) and increased autumn/winter westerlies-carried rains over the 336 

western Mediterranean, which supports enhanced supply of fresher water into the basin. This scenario 337 

seems to reflect a regional climate condition since it is consistent with the establishment of the Early 338 
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Holocene humid phase, occurring between 11.5 and 7 ka (Jalut et al., 2009; Magny et al., 2002, 2013; 339 

Peyron et al., 2017; Zanchetta et al., 2007; Zielhofer et al., 2017) and with additional evidences of 340 

autumn/winter precipitation increase over the northern Mediterranean borderlands during northern 341 

Hemisphere insolation maxima (Kutzbach et al., 2013; Meijer and Tuenter, 2007; Toucanne et al., 342 

2015; Tzedakis, 2007). Phase I is within the interval of sapropel layer S1 deposition in the Eastern 343 

Mediterranean (10.8-6.1 ka, De Lange et al., 2008), developed during maximum summer insolation, 344 

that contributed, through the enhanced monsoon precipitation, to increased runoff in the Eastern 345 

Mediterranean (Howell and Thunell, 1992; Rohling et al., 2002, 2004, 2015; Rossignol-Strick, 1985; 346 

Rossignol-Strick et al., 1982). Our data evidence that freshwater runoff during sapropel events was 347 

not restricted to the Eastern Mediterranean but was rather widespread over the entire Mediterranean 348 

Sea due to increased rainfall (Bard et al., 2002; Kallel et al., 2000; Kallel and Labeyrie, 1997; 349 

Toucanne et al., 2015; Zanchetta et al., 2007), thus strengthening the connection between North 350 

African summer monsoon and the increased western Mediterranean autumn/winter precipitation 351 

during sapropel deposition (Toucanne et al., 2015). On the other hand, phase I straddles the final 352 

phase of the deposition of ORL 1 as indicated by the decreasing, albeit still high, values of C37 (Fig. 353 

5), and reduced deep water ventilation in the western Mediterranean (Frigola et al., 2007). Given the 354 

time offset between the beginning of the ORL1 formation (14.5 ka, Martrat et al., 2014), and the 355 

recorded enhanced riverine input and humidity on land at c.a. 11.5 ka, it appears unlikely that excess 356 

precipitation was the driving force of the ORL1 formation in the western Mediterranean (Rogerson 357 

et al., 2008). As stated in Bazzicalupo et al. (2018), shoaling of the nutricline and increased export 358 

production at the sea floor are relevant mechanism in the ORL1 deposition at the study core. 359 

 360 

The 8.2 ka event 361 

The transition between phase I and the following phase II is characterized by higher absolute 362 

abundances of N. incompta between ~8.6 ka and ~8.1 ka (Fig. 6) and by a sharp warm water taxa 363 

decrease (Fig. 5), suggesting water cooling. In more detail, a sharp and brief cooling event of about 364 

3°C is recorded in annual, winter and summer SST (Fig. 6). An interruption of the surface water 365 

warming trend is also indicated by a decrease of warm water coccolith taxa in the early stage (Fig. 366 

5). A concomitant temperate forest regression (Fig. 6) marks a short-term precipitation decrease 367 

episode. 368 

This cooling episode is here related to the well-known cold and dry 8.2 ka event that punctuates the 369 

early Holocene evolution and it is broadly recognized in Greenland ice core records (Alley and 370 

Ágústsdóttir, 2005; Bond et al., 1997, 2001; Dansgaard et al., 1993; Lowe et al., 2008; Rasmussen et 371 

al., 2006; Rohling and Pälike, 2005) and in the Mediterranean (e.g. De Rijk et al., 1999; Lirer et al., 372 
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2013; Rohling et al., 2002; Sprovieri et al., 2003). In the ODP Site 976, the modification of the water 373 

column structure indicated by calcareous plankton can be related to a southward displacement of the 374 

ITCZ (Intertropical Convergence Zone) and an intensified impact of harsher, higher-latitude climate 375 

conditions in the Mediterranean region (Rohling et al., 2002, 2004). Today, N. incompta does not 376 

dwell in the Alboran Sea due to the occurrence of deep pycnocline and nutricline (located at a depth 377 

of about 150-200m) and winter temperatures reaching 15°C (Pujol and Vergnaud Grazzini, 1995; 378 

Rohling et al., 1995). On the other hand, this taxon is abundant in the Gulf of Lion where strong 379 

winter mixing facilitates the advection of nutrients into the euphotic zone and, mainly, winter 380 

temperatures reach 12°C (Pujol and Vergnaud-Grazzini, 1995; Rohling et al., 1995).  381 

The marked increase of coccolithophore production within the upper part of the 8.2 ka event, as 382 

indicated by the peak in total NAR (Fig. 2), is likely the result of an important hydrographic 383 

modification occurring at this time, related to the enhanced Atlantic water inflow. This feature marks 384 

the onset of the following phase II as discussed below and is very well comparable with a similar 385 

peak in the coccolithophore absolute abundance at 8.2 ka recorded in the Alboran Sea by Colmenero-386 

Hidalgo et al. (2004) and related to the onset of gyre circulation into the basin.  387 

 388 

Phase II: the middle Holocene establishment of the modern oceanographic circulation 389 

Phase II represents the second major step in the hydrographic evolution of the basin. It develops 390 

between 8.2 ka and about 5.3 ka, thus it nearly represents the middle Holocene portion of the record 391 

(Bárcena et al., 2004; Giraudeau, 1993). It is marked by a distinct abundance increase of F. profunda 392 

and a subsequent increase of G. inflata (Fig. 6) which replaces N. incompta. Florisphaera profunda 393 

is a deep photic zone dweller and thrives with a deep nutricline and water column stratification 394 

(Baumann et al., 2005; Incarbona et al., 2013; Sprovieri et al., 2012), while G. inflata is a deep living 395 

taxon and benefits from water column stability, a deep pycnocline and reduced upwelling conditions. 396 

The shift between G. inflata and N. incompta is in agreement with Rohling et al. (1995) that linked 397 

this event to the establishment of the modern front-dominated conditions in the Alboran Sea, when 398 

the amount of Atlantic water inflow was close to the present volume. At Site 976, the enhanced 399 

Atlantic inflow, following the deglaciation and the sea level rise, would have deepened the nutricline 400 

favoring F. profunda. In addition, it would have promoted both the development of the modern 401 

geostrophic front, where G. inflata proliferates (Pujol and Vergnaud-Grazzini,1995; Rohling et al., 402 

1995) and the establishment of WAG (Ausín et al., 2015b; Pérez-Folgado et al., 2003; Rohling et al., 403 

1995). This hydrographic evolution follows the culmination of the highest rate of global sea-level 404 

rise (Lambeck et al., 2014). Concurrently to the development of a deep nutricline, high annual and 405 

seasonal SSTs are recorded (Fig. 6) also marked by the increase of the tropical taxon T. sacculifer 406 
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(Fig. 6). Conversely, small Gephyrocapsa and neogloboquadrinids decrease (Fig. 6). We suggest that 407 

anomalous sea-surface warmer conditions during this period promoted a prolonged water column 408 

stratification, deepening of the thermocline (nutricline) and decrease of winter wind-induced mixing. 409 

These conditions contributed to a higher increase of warm and oligotrophic taxa, that currently thrives 410 

during mid-summer in the Mediterranean Sea (Bárcena et al., 2004; Pujol and Vergnaud-Grazzini, 411 

1995), and decreasing of those taxa more related to nutrient-rich conditions such as small 412 

Gephyrocapsa and neogloboquadrinids. The occurrence of G. bulloides during this phase (Fig. 6) is 413 

consistent with its opportunistic behavior (Pujol and Vergnaud-Grazzini, 1995; Rohling et al., 1997; 414 

Schiebel et al., 2001) and its favorite habitat, highly dependent on enhanced food availability, related 415 

to strong seasonal contrast or river input. High abundances of temperate forest in the early stage of 416 

phase II (Fig. 6) suggest still wet climate conditions on land. This phase, although coeval with the 417 

younger portion of S1, is subsequent to the end of ORL 1 deposition in the Alboran Sea (Fig. 5). Deep 418 

anoxia in the western basin is in fact independent of that of the eastern basin (Rogerson et al., 2008) 419 

and ORL 1 termination is related to the 8.2 ka event and to the establishment of the modern front-420 

dominated conditions in the western Mediterranean (Cacho et al., 2002; Rogerson et al., 2008). 421 

During phase II, differently from phase I occurring during ORL1 deposition and characterized by 422 

shoaling of the nutricline and enhanced productivity in surface water (Bazzicalupo et al., 2018), the 423 

calcareous plankton assemblages indicate stratified conditions in column water and deep nutricline, 424 

which likely prevented productivity in surface water and export production at the sea floor. This 425 

datum supports the hypothesis that productivity, although does not represent the triggering 426 

mechanism, may provide a secondary control in the ORL formation (Rogerson et al., 2008). 427 

  428 

Phase III: the late Holocene reduced seasonality 429 

This phase is marked by the coeval increase of small Gephyrocapsa and G. bulloides, at c.a. 5.3 ka 430 

(Fig. 6), suggesting increased nutrient availability in surface waters. These taxa are, in fact, 431 

considered high surface water productivity proxies (Barcena et al., 2004; Colmenero-Hidalgo et al., 432 

2004; Gartner et al., 1987; Pujol and Vergnaud-Grazzini, 1995 Takahashi and Okada, 2000). The 433 

enhanced abundances of the deep mixed dweller T. truncatulinoides (Fig. 6) support more intense 434 

seasonal and prolonged mixing. Elevated abundances of T. truncatulinodes from sediment trap in the 435 

Gulf of Lions have been related to increased winter mixing conditions (Rigual-Hernández et al., 436 

2012). On the other hand, the high abundance of F. profunda and G. inflata (Fig. 6) is still in relation 437 

with the modern front-dominated conditions in the Alboran Sea and deep nutricline, originating at 438 

the onset of phase II. Oscillations in the absolute abundances of F. profunda as well as of small 439 

Gephyrocapsa (Fig. 6) are likely in relation with short-term fluctuations in total NAR, which are 440 
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discussed in more detail below. Foraminifera warm-water taxa, together with G. ruber group and to 441 

a less degree warm water coccolith taxa, show a general decreasing trend (Fig. 5). The summer SST 442 

record (Fig. 6) is in line with reducing summer insolation trend (Fig. 5) and with evidence from the 443 

western Mediterranean terrestrial record of reduced seasonality (cooler summers and warmer winters) 444 

during the transition to late Holocene (Ramos-Román et al., 2018). The aridification process, 445 

accompanying the reduced seasonality at this time is highlighted, in the pollen record, by an increase 446 

in Artemisia at around 4 ka at the studied core (Fig. 6), and by several coeval Mediterranean records 447 

(Desprat et al., 2013; Fletcher et al., 2012; Fletcher and Sánchez Goñi, 2008; Jalali et al., 2016; Jalut 448 

et al., 2000, 2009; Magny et al., 2013; Ramos-Román et al., 2018).  449 

The last 3.5 kyr of phase III are marked by a relevant increase of T. sacculifer (Fig. 6). The distribution 450 

pattern of this taxon is punctuated by three main short-term pulses (Ts1-Ts3 in Fig. 6), not previously 451 

recorded in the western Mediterranean. Trilobatus sacculifer mainly occurs in warm and oligotrophic 452 

tropical and sub-tropical waters with low seasonality (Bé and Hutson, 1977; Fraile et al., 2008; 453 

Hemleben et al., 1989; Vincent and Berger, 1981). Today this taxon reaches its maximum abundance 454 

in the Eastern Mediterranean basin and in the Red Sea, where low nutrient and warm surface waters 455 

prevail throughout the year, due to the relatively stable deep pycnocline (Kallel and Labeyrie, 1997; 456 

Kucera et al., 2005; Pujol and Vergnaud-Grazzini, 1995; Siccha et al., 2009). In the Red Sea, its 457 

increasing trend, during the Holocene, has been also related to more arid conditions during reduced 458 

monsoon climate system and prevailing eastern Mediterranean climate system (Edelman-Furstenberg 459 

et al., 2009). In our record, the last 3.5 kyr are characterized by a reduction of seasonal thermal 460 

gradient (DSSTsum-win, Fig. 6) in the seawater, likely related to weak increase of winter SST, 461 

concomitant with ameliorate climate condition on land, as suggested by coeval relative increases of 462 

temperate forests in the pollen assemblages (Fig. 6). A positive correlation between T. sacculifer and 463 

weaker winter conditions and stratification has been also found in the Arabian Sea (Munz et al., 464 

2015). We suggest that, at Site 976, relatively higher winter SSTs (with values exceeding 15°C) with 465 

respect to the earlier interval, developed more stable year-round surface water conditions in the basin 466 

favoring the increase of T. sacculifer in the last 3.5 kyr. Such conditions could probably represent the 467 

response to changes in hydrological conditions in the adjacent Iberian basin, related to the reduction 468 

of meltwater discharge in the North Atlantic (Bond et al., 2001). In the Gulf of Cádiz, according to 469 

Schirrmacher et al. (2019), larger seasonal SST contrasts, during the Holocene, are related to periods 470 

of enhanced iceberg discharge; the northward heat transport was blocked due to freshwater forcing 471 

in the North Atlantic resulting in colder winter temperatures and higher summer temperatures due to 472 

a seasonal northward migration of Intertropical Convergence Zone (ITCZ). This mechanism is similar 473 

to the one proposed by Repschläger et al. (2017) for the early Holocene, when reinforcements of 474 
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northward heat transport and migration of Subtropical Gyre is found during periods of weak north 475 

Atlantic meltwater discharge. Similarly, we retain that the decrease in the drift ice index during the 476 

last 3 kyr (Bond et al., 2001), could have promoted higher northward advection of warmer water 477 

masses that could have also reached the Alboran Sea through the Strait of Gibraltar, favoring the 478 

instauration of a lower seasonal thermal gradient. The three distinct peaks of T. sacculifer, centered 479 

at about 2.9 ka, 1.8 ka and 0.7 ka, trace the occurrence of short warm pulses at the core location. They 480 

appear chronologically correlated with the short-term warm and dry events identified in northwestern 481 

Africa lakes and in the Adriatic Sea (Piva et al., 2008; Zielhofer et al., 2017). The phase Ts1 is also 482 

chronologically correlated with the warm phase recognized by Margaritelli et al. (2016) during the 483 

Middle Bronze Age–Iron Age in the central Mediterranean. 484 

 485 

Millennial scale variations 486 

Since the WAG establishment in the Alboran Sea at ca. 8 ka, total NAR values show a series of 487 

millennial-scale fluctuations over the middle and late Holocene at Site 976 (Fig. 7). This pattern 488 

indicates that high-frequency variations in the coccolithophore productivity are superimposed to the 489 

main climate phases. Connecting coccolithophore productivity to environmental proxies is a complex 490 

task since multiple relationships might affect the link between the various signals. A certain 491 

chronological uncertainty is also added, when comparing different sites with different age models. In 492 

order to unravel the forcing mechanism responsible for coccolithophore productivity variations at the 493 

studied core, we compared a few coccolithophore proxies with the pattern of d18Oseawater available at 494 

the ODP Site 976 (Jiménez-Amat and Zahn, 2015), as a proxy of local surface water salinity variation. 495 

We have also performed a comparison with the detrended δ18Ospeleothem curve (Smith et al., 2016), 496 

which represents a high-resolution archive of quasi-cyclical events of relatively wet-to-dry climatic 497 

conditions over Iberia, with a ~1500 year frequency (Smith et al., 2016). This trend is significantly 498 

correlated with the NAO index (Olsen et al., 2012) (Fig. 7). A relationship between coccolithophore 499 

productivity and NAO modes has been recently suggested in the Alboran Sea by Ausín et al. (2015a). 500 

These authors indicate weakened (intensified) upwelling, related to weaker (stronger) westerlies, 501 

responsible for reduced (reinforced) WMDW in the Gulf of Lions. In this scenario, the NAO 502 

circulation mode is the forcing mechanism of coccolithophore variability. Intensified upwelling 503 

would have been promoted by stronger westerlies blowing over the Gulf of Lions, during a NAO – 504 

mode. These conditions would have promoted major WMDW formation and simultaneous 505 

enhancement of the AJ influx, both fluctuating in-phase (Ausín et al., 2015a; García Lafuente et al., 506 

2002, 2007) . The AJ would have migrated southward, allowing the cool subsurface waters to fill the 507 

area left behind the jet (Sarhan, 2000) and thus promoting upwelling. In the present work, a first 508 
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comparison between datasets indicates that low salinity phases (lighter d18Oseawater) are concurrent 509 

with high values of G. oceanica (Fig. 7). The occurrence of G. oceanica within the western 510 

Mediterranean basin has been often related to Atlantic surface water inflows (Álvarez et al., 2010; 511 

Bárcena et al., 2004; Bazzicalupo et al., 2018; Knappertsbusch, 1993; Oviedo et al., 2017). The 512 

positive correlation of the coccolithophore taxon with salinity minima at Site 976, further supports 513 

the relation between G. oceanica and Atlantic surface water inflows, since salinity minimum in the 514 

Alboran Sea essentially traces phases of enhanced Atlantic water into the basin (Font et al., 1998; 515 

Sarhan et al., 2000; Viúdez et al., 1996). Consequently, we use the lighter values of d18Oseawater and 516 

the increased abundance of G. oceanica as proxies of Atlantic inflow in the Alboran Sea (Fig. 7), 517 

which both provide a regime of cyclical Atlantic water inflow intensity in the basin. Coccolithophore 518 

productivity variations, expressed as total NAR, display distinct pulses, well-correlated with the 519 

pattern of the changing Atlantic inflow intensity and with the concomitant occurrence of alternating 520 

dry/wet phases in the Iberia δ18Ospeleothem (Fig. 7). Therefore, the various proxies point out to a 521 

coupling between enhanced coccolithophore productivity (high total NAR values), intensified 522 

Atlantic waters inflow (lighter d18Oseawater and increased abundance of G. oceanica), and arid 523 

conditions over the Iberia Peninsula (peaks in δ18Ospeleothem), correlated with NAO+ phases (Fig. 7). 524 

Our data support the model proposed by Ausín et al. (2015a), and specifically the relation between 525 

coccolithophore productivity, Atlantic inflow and WMDW strength, although the dataset at site 976 526 

indicate an opposite relationship between coccolithophore productivity and NAO mode. According 527 

to the present results, enhanced Atlantic water inflow occurred during a persistent NAO+ index (Fig. 528 

7); the latter would have strengthened the north-westerlies over the northwestern Mediterranean 529 

basin, promoting a reinforcement of deepwater overturning and in turn increased the AJ (Fig. 8). The 530 

suggested relation between NAO mode and WMDW strength is in agreement with results from 531 

today’s survey in the western Mediterranean (Rixen et al., 2005) and with the proposed relationship 532 

between strengthening of the WMDW and NAO variability in the past. In fact, during the Holocene 533 

and the Dansgaard-Oeschger events NAO + phases would have strengthen the northwesterlies over 534 

the northwestern Mediterranean, enhancing the WMDW formation (Frigola et al., 2007; Moreno et 535 

al., 2002, 2004, 2005; Nieto-Moreno et al., 2011). The scenario is also consistent with the observed 536 

decadal-variability between NAO intensity and upwelling strength highlighted in the western 537 

Mediterranean (Vargas-Yáñez et al., 2008). A possible reasonable explanation for the differing 538 

interpretations between the present work and the Ausín et al. (2015a) study, is that the latter authors 539 

based their paleoceanographic reconstruction on oscillations of the F. profunda NAR abundances in 540 

the Alboran Sea. In Ausín et al. (2015a), F. profunda NAR peaks have been linked to the 541 

intensification of the upwelling conditions in the area. Recent data establish a precise relationship 542 
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between F. profunda and primary productivity levels in today’s low-latitude oceans (Hernández-543 

Almeida et al., 2019) and suggest that the link between F. profunda abundance and net primary 544 

productivity in the Mediterranean Sea is not straight forward thus discouraging the use of this taxon 545 

as a productivity indicator into the basin (Hernández-Almeida et al., 2019).  546 

 547 

External and internal forcing mechanisms of coccolithophore productivity cycles 548 

The time series analysis performed on the total NAR record confirms the occurrence of millennial-549 

scale periodicities in coccolithophore productivity during the Holocene and highlights two main 550 

periodicities through the record: the first one of ~ 1100 yr (from 12.5 to c.a. 5 ka) and the second one 551 

of ~ 1700 yr (from 5 to 0.19 ka) (Fig. 4c). The results of spectral and wavelength analyses indicate 552 

that coccolithophore productivity changes in the Alboran Sea were modulated both by external (solar) 553 

and internal (oceanic-atmospheric) forcing. In fact, the ~ 1100 yr-cycles appear close to the ~ 1000 554 

yr cycle identified during the early Holocene in solar proxies in North Atlantic records and in IRD 555 

record (Debret et al., 2007, 2009). They are also detected in the western Mediterranean pollen record, 556 

which displays a periodic component of ~ 900 yr (Fletcher et al., 2012) and of ~ 1100 yr (Ramos-557 

Román et al., 2018) during the early and middle Holocene. On the other hand, cycles of ~ 1700 yr 558 

are very close to the 1600-year cycle dominating during the last 5000 yr in several paleoclimate 559 

records (Debret et al., 2007; 2009 and references therein) and related to internal 560 

(oceanic/atmospheric) forcing. A similar shift in periodicity to a dominant ~ 1750 oscillation in the 561 

last 6 ka (Fletcher et al., 2012) and ~ 1600 yr-cycle (Ramos-Román et al., 2018) in the last 4.7 ka has 562 

been detected in the western Mediterranean in the pollen record and is related to the influence of 563 

NAO-like circulation in the mid-late Holocene. The similar pattern in cyclicity observed in the 564 

present study in NAR pattern in the Alboran Sea strengthens the relation between coccolithophore 565 

productivity/hydrographic changes and atmospheric variability modulated by NAO fluctuations and 566 

sustains the occurrence of a periodicity change through the Holocene from a dominant external (solar) 567 

to a dominant internal (oceanic/atmospheric) forcing. 568 

 569 

Conclusions 570 

The calcareous plankton assemblage (coccolithophore and foraminifera) of the ODP Site 976 from 571 

the Alboran Sea has been studied at a centennial-scale resolution, to investigate the climate variability 572 

and the forcing mechanisms affecting the western Mediterranean basin during the last 12.5 ka. 573 

Coccolithophore and planktonic foraminifera dataset is integrated with pollen and geochemical data 574 

available at the site. During a first step, between 11.5 and 8.2 ka, calcareous plankton assemblage 575 

clearly traces increasing temperature and freshwater arrival, related to riverine input in the basin, 576 
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during a period of insolation maxima. The timing of this phase in the Alboran Sea is quasi 577 

concomitant with sapropel S1 deposition in the eastern Mediterranean, suggesting a connection 578 

between the monsoonal mechanism for sapropel formation and high rainfall conditions in 579 

Northwestern Europe. Following an abrupt surface water temperature decrease correlated with 580 

humidity reduction and centered at 8.2 ka, the second phase (8-4.6 ka) is marked by a profound 581 

change in the planktonic assemblages, reflecting a more stratified water column, the deepening of the 582 

nutricline following a sea level rise and the instauration of the modern gyre circulation. The third 583 

final phase (4.6-0.19 ka) is characterized by reduced seasonality (cooler summers and warmer 584 

winters), enhanced surface water mixing and increased aridification on land related with a decrease 585 

in summer insolation. Short-term cyclicity occurs in coccolithophore productivity, with a clear pattern 586 

mainly occurring since the establishment of the modern circulation. Millennial-cycles of increased 587 

coccolithophore productivity are associated with enhanced inflows of Atlantic water from the 588 

Gibraltar strait modulated by NAO+ mode. The proposed scenario strengthens the role of 589 

hydrographic changes and atmospheric variability modulated by NAO fluctuations on 590 

coccolithophore productivity in the Alboran Sea. The results of the spectral analysis add information 591 

on the value of coccolithophores in recording environmental changes and highlight that 592 

coccolithophore productivity is modulated by both external (solar) and internal (oceanic-593 

atmospheric) forcing. A shift in periodicity from a dominant ~ 1100 yr oscillations to ~ 1600 yr 594 

periodicity occurs at about 4 ka and appears in agreement with enhanced influence of NAO-like 595 

circulation during the late Holocene. 596 
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 1141 

Figure captions 1142 

 1143 

Fig. 1: Location of ODP Site 976 in the Alboran Sea (western Mediterranean), bathymetry of the 1144 

area and modern-day oceanographic circulation. AW (Atlantic Water); MOW (Mediterranean 1145 

Outflow Water); WMDW (western Mediterranean Deep Water); LIW (Levantine Intermediate 1146 

Water); WAG (western Alboran Gyre); EAG (eastern Alboran Gyre). In violet shade: Alboran and 1147 

Almeria-Oran upwelling fronts 1148 

 1149 

Fig. 2: Downcore variations of calcareous nannofossil assemblages at Site 976 plotted as relative 1150 

abundance (%, black line) and nannofossil accumulation rate - NAR (coccolith/cm2 kyr, filled area). 1151 

Sedimentation rate over time used for NAR calculation, from Martrat et al. (2014), is also shown. 1152 

YD: Younger Dryas.  1153 

 1154 

Fig. 3: Downcore variations of planktonic foraminifera assemblages at Site 976 plotted as relative 1155 

abundance (%, black line) and planktonic foraminifera accumulation rate – pfAR (forams/cm2kyr, 1156 

filled area), together with foraminifera-based summer, winter and annual SST and similarity index. 1157 

Sedimentation rate over time, used for pfAR calculation, from Martrat et al. (2014). YD: Younger 1158 

Dryas.  1159 

 1160 

Fig. 4:(a) Signal of the Total NAR decomposed with CEEMD in five IMFs plus a residue (trend); 1161 

(b), (c), (d), (e) spectral analysis made with “REDFIT” and Foster’s WWZ, of the IMFs extracted 1162 

from Total NAR. The green and black line represent the 95% and 80% Confident Level 1163 

respectively. Significantly periodicity (red dot) and relative values expressed in years were 1164 
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reported. 1165 

 1166 

Fig. 5: Abundances variations of calcareous plankton assemblage and additional proxies from Site 1167 

976: accumulation rate of selected coccolithophores and planktonic foraminifera; relative 1168 

abundance patterns of selected pollen taxa at Site 976 from Combourieu-Nebout et al. (2009); black 1169 

line, 3 point average. Di- and tri-unsaturated alkenones of 37 carbons (C37) from Martrat et al. 1170 

(2014) and summer insolation curve (Laskar et al., 2004) are also shown. Younger Dryas (YD, grey 1171 

bar); 8.2 ka event (light blue bar); dashed black lines are used to trace boundaries among phases I-1172 

III.  1173 

 1174 

Fig. 6: Abundances variations of calcareous plankton assemblage and additional proxies from Site 1175 

976: accumulation rate of selected coccolithophores and planktonic foraminifera; black line, 3 point 1176 

average; foram based seasonal SST variations at Site 976; relative abundance patterns of selected 1177 

pollen taxa at Site 976 from Combourieu-Nebout et al. (2009). 8.2 ka event (dotted bar),  1178 

dashed black lines are used to trace boundaries among phases I-III.  1179 

 1180 

Fig. 7: Abundances variation of coccolithophore assemblage and climate proxies from Site 976: G. 1181 

oceanica absolute abundances (black line, 3 point average); d18Oseawater at Site 976 (green line, 3 1182 

point average) (Jimenez-Amat and Zahn, 2015); d18O of combined and de-trended speleothems 1183 

from Iberian Peninsula (Smith et al., 2016); coccolithophore productivity (total Nannofossil 1184 

Accumulation Rate) at Site 976 (black line, 3 point average). Inferred NAO circulation pattern from 1185 

redox variability from Lake SS1220, Greenland (Olsen et al., 2012) is also shown. Light blue bars 1186 

represent periods of increased total NAR concomitant with enhanced Atlantic inflow and positive 1187 

NAO index phases.  1188 

 1189 

Fig. 8: Proposed different NAO circulations pattern scenarios as explained in the text: a) NAO+ 1190 

enhanced northwesterly winds, deep water formation and Atlantic inflow inducing upwelling and 1191 

coccolithophore productivity; b) NAO- reduced northwesterly winds, deep water formation and 1192 

Atlantic inflow, inducing stratification and reduced coccolithophore productivity. LIW (Levantine 1193 

Intermediate Water). AJ (Atlantic Jet); WMDW (western Mediterranean Deep Water). MOW 1194 

(Mediterranean Outflow Water). Diagram not to scale. 1195 
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