178 research outputs found

    Long-term effects of fishing on physiological performance of the Manila clam (Ruditapes philippinarum) in the Lagoon of Venice

    Get PDF
    The Manila clam (Ruditapes philippinarum) is an important economic resource for fisheries in the Lagoon of Venice, where this species is fished and farmed. With the aim of evaluating possible fishing-induced long-term effects undergone by clam populations subjected to fishing efforts, physiological biomarkers were measured at organism level (clearance and respiration rates, scope for growth and survival-in-air test). Clams were collected on a seasonal basis from sites characterized by various fishing management practices: a free fishing area at S. Angelo and an area licensed for clam farming at Chioggia, where a non-fishing sub-area was established. R. philippinarum collected at S. Angelo generally showed reduced filtering activity and higher oxygen consumption, revealing general worsening in clam well-being in comparison with individuals from both Chioggia areas. This condition, resulting in lower standardized scope for growth values, may be explained by both environmental and fishing effort differences. Comparing Chioggia samples, better physiological performances were exhibited by clams from the non-fishing area, though no significant differences were observed. In winter, the survival-in-air test revealed the detrimental effects of fishing on clams, whereas in the other seasons this response generally seemed to be mostly related to other exogenous and endogenous factors. Although differences among sites and seasons were always statistically significant, all physiological parameters indicate the great tolerance of R. philippinarum to changing environmental conditions.European Commission [99/062

    Effects of hydraulic dredging on the physiological responses of the target species Chamelea gallina (Mollusca: Bivalvia): laboratory experiments and field surveys

    Get PDF
    The effects of mechanical stress in the Venus clam Chamelea gallina during hydraulic dredging were assessed in both laboratory and field studies in order to measure physiological biomarkers at organism level (clearance rate, respiration rate, scope for growth, and survival in air test)

    Effects of hydraulic dredging on the physiological responses of the target species <i>Chamelea gallina</i> (Mollusca: Bivalvia): laboratory experiments and field surveys

    Get PDF
    El efecto del stress mecánico en la chirla Chamelea gallina durante el dragado hidráulico se estimó tanto en el laboratorio como en estudios de campo, midiendo algunos marcadores fisiológicos a nivel de los organismos (tasa de aclarado, tasa de respiración, energía disponible para el crecimiento y supervivencia en pruebas fuera del agua). En el laboratorio se simuló el stress mecánico mediante agitación de las chirlas en un mezclador vortex. En el campo, las chirlas se recolectaron estacionalmente en dos puntos de muestreo a lo largo de la costa del Adriático norte (Lido y Jesolo) y se aplicaron cuatro niveles de stress: el más alto fue el utilizado en la pesca comercial (i.e. alta presión de agua y separación mecánica) y el más bajo fue el muestreo manual por submarinistas. La supervivencia fuera del agua fue el marcador más sensible en la evaluación del stress mecánico en el laboratorio. La tasa de aclarado también decreció significativamente cuando se aplicó agitación. Los resultados de campo indicaron que la alta presión de agua y separación mecanizada afectaron el aclarado, la energía disponible para el crecimiento y la supervivencia fuera del agua, mostrando todos ellos tendencias decrecientes a medida que el stress mecánico incrementaba en los dos puntos de muestreo. Los efectos perjudiciales de la perturbación mecánica pueden ser enfatizados dependiendo de la estación, cuando incrementa el stress endógeno y externo. Se destaca un riesgo potencial para las chirlas pequeñas que son pescadas y posteriormente descartadas

    Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: genomic tools for environmental monitoring

    Get PDF
    Abstract Background The Manila clam, Ruditapes philippinarum, is one of the major aquaculture species in the world and a potential sentinel organism for monitoring the status of marine ecosystems. However, genomic resources for R. philippinarum are still extremely limited. Global analysis of gene expression profiles is increasingly used to evaluate the biological effects of various environmental stressors on aquatic animals under either artificial conditions or in the wild. Here, we report on the development of a transcriptomic platform for global gene expression profiling in the Manila clam. Results A normalized cDNA library representing a mixture of adult tissues was sequenced using a ultra high-throughput sequencing technology (Roche 454). A database consisting of 32,606 unique transcripts was constructed, 9,747 (30%) of which could be annotated by similarity. An oligo-DNA microarray platform was designed and applied to profile gene expression of digestive gland and gills. Functional annotation of differentially expressed genes between different tissues was performed by enrichment analysis. Expression of Natural Antisense Transcripts (NAT) analysis was also performed and bi-directional transcription appears a common phenomenon in the R. philippinarum transcriptome. A preliminary study on clam samples collected in a highly polluted area of the Venice Lagoon demonstrated the applicability of genomic tools to environmental monitoring. Conclusions The transcriptomic platform developed for the Manila clam confirmed the high level of reproducibility of current microarray technology. Next-generation sequencing provided a good representation of the clam transcriptome. Despite the known limitations in transcript annotation and sequence coverage for non model species, sufficient information was obtained to identify a large set of genes potentially involved in cellular response to environmental stress.This work was partially supported by a grant from European Union-funded Network of Excellence "Marine Genomics Europe". CS wishes to acknowledge additional funding from the Ministry of Education and Science (Spain) through grant AGL2007-60049. MM had a PhD scholarship from the University of Florence, Italy. RL was recipient of PhD fellowship SFRH/BD/30112/2006, from the Portuguese Science and Technology Foundation (FCT) and LC and RL acknowledge a grant from FCT project ISOPERK (PTDC/CVT/72083/2006).Peer Reviewe

    Massive coastal tourism influx to the Mediterranean Sea: The environmental risk of sunscreens

    Get PDF
    The Mediterranean region is, by far, the leading tourism destination in the world, receiving more than 330 million tourists in 2016. This tourism is undertaken mostly for seaside holidays, and during the summer season concentrates between 46% and 69% of the total international arrivals; this is equivalent to a density of 2.9 tourists per meter of Mediterranean coast, or double this number taking into account the local/permanent population in addition. Previous studies have reported not only the presence of sunscreen in the various environmental compartments (water, sediments and biota) of the Mediterranean Sea (MS) and other regions, but also show that sunscreen products are toxic for marine biota and are accumulated and biomagnificated. Here, we highlight that the environmental risk of these chemicals is likely to be exacerbated in the MS due to the massive influx of tourists and its densely populated coasts, the basin's limited exchanges with the ocean, the high residence time of surface waters, and its oligotrophic waters.A. Rodríguez-Romero is supported by the Spanish grant Juan de la Cierva Formación 2015 (JCI-2015-26873) and thanks to the University of Cantabria “Proyecto Puente 2017”under SODERCAN and ERDF Operational Programme

    Key paediatric messages from the 2016 European Respiratory Society International Congress.

    Get PDF
    In this article, the Group Chairs of the Paediatric Assembly of the European Respiratory Society (ERS) highlight some of the most interesting abstracts presented at the 2016 ERS International Congress, which was held in London.J. Grigg was funded in part by the Dept of Health, National Institute for Health Research (Programme Grants for Applied Research, North Thames CLAHRC)

    The influence of salinity on the effects of Multi-walled carbon nanotubes on polychaetes

    Get PDF
    Salinity shifts in estuarine and coastal areas are becoming a topic of concern and are one of the main factors influencing nanoparticles behaviour in the environment. For this reason, the impacts of multiwalled carbon nanotubes (MWCNTs) under different seawater salinity conditions were evaluated on the common ragworm Hediste diversicolor, a polychaete species widely used as bioindicator of estuarine environmental quality. An innovative method to assess the presence of MWCNT aggregates in the sediments was used for the first time. Biomarkers approach was used to evaluate the metabolic capacity, oxidative status and neurotoxicity of polychaetes after long-term exposure. The results revealed an alteration of energy-related responses in contaminated polychaetes under both salinity conditions, resulting in an increase of metabolism and expenditure of their energy reserves (lower glycogen and protein contents). Moreover, a concentration-dependent toxicity (higher lipid peroxidation, lower ratio between reduced and oxidized glutathione and activation of antioxidant defences and biotransformation mechanisms) was observed in H. diversicolor, especially when exposed to low salinity. Additionally, neurotoxicity was observed by inhibition of Cholinesterases activity in organisms exposed to MWCNTs at both salinities.publishe

    The most primitive metazoan animals, the placozoans, show high sensitivity to increasing ocean temperatures and acidities

    Get PDF
    The increase in atmospheric carbon dioxide (CO2) leads to rising temperatures and acidification in the oceans, which directly or indirectly affects all marine organisms, from bacteria to animals. We here ask whether the simplest-and possibly also the oldest-metazoan animals, the placozoans, are particularly sensitive to ocean warming and acidification. Placozoans are found in all warm and temperate oceans and are soft-bodied, microscopic invertebrates lacking any calcified structures, organs, or symmetry. We here show that placozoans respond highly sensitive to temperature and acidity stress. The data reveal differential responses in different placozoan lineages and encourage efforts to develop placozoans as a potential biomarker system

    Probabilistic analysis of a PR steel-concrete composite frame

    Get PDF
    The paper investigates the seismic performance of a partially-restrained steel-concrete frame using the probabilistic approach. The analyzed frame has been tested at the ELSA laboraotry of the Joint Research Centre of Ispra (Italy). The component method has been used to model both interior and exterior composite joints. The Latin Hypercube method has then been employed to draw the probabilistic distribution curves of the joints. Hence, the fagility and performance curves of the whole PR composite frame have beed determined for four limit states
    corecore