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Probabilistic analysis of a PR steel-concrete composite frame
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ABSTRACT: The paper investigates the seismic performance of a partially-restrained steel-concrete composite
frame using the probabilistic approach. The analyzed frame has been tested at the ELSA laboratory of the Joint
Research Centre of Ispra (Italy). The component method has been used to model both interior and exterior
composite joints. The Latin Hypercube method has then been employed to draw the probabilistic distribution
curves of the joints. Hence, the fragility and performance curves of the whole PR composite frame have been

determined for four limit states.

1 INTRODUCTION

Modern codes for design in earthquake-prone regions
require the structure to satisfy some performance
objectives during the service life (CEN 1996, SEAOC
1996, Cornell & Krawinkler 2000). This design phi-
losophy, known as Performance Based Seismic Design
(PBSD), combines some structural performance lev-
els with pre-fixed intensities of the seismic action. In
this context, it has recently pointed out that the use of
the probabilistic approach should be preferred when
evaluating the structural performance. The traditional
deterministic approach, in fact, may lead to incon-
sistencies between predicted and noticed structural
damages because of the uncertainties in the models
used to evaluate both the demand and capacity. Con-
versely, the probabilistic approach can fully consider
all of the uncertainties affecting the prediction of the
seismic behaviour and, therefore, the actual seismic
performance.

The seismic reliability of a given structural typology
can be evaluated by means of the fragility curves. Such
curves provide the probability of occurrence F,(x) ofa
given Limit State (LS), conditioned on the parameter
IM, representing the seismic hazard (which is usu-
ally the Peak Ground Acceleration PGA, the spectral
acceleration S, or the spectral displacement S,):

F,(x)= P[LS|IM = x] ey

where the limit state LS is considered to be reached
when a control variable assumes a pre-defined value.
For a frame, usually the InterStorey Drift Angle (ISDA)
or a damage parameter, such as the Park and Ang
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index Dpy (Park & Ang 1985), are assumed as con-
trol variables. Once the fragility curves are known, the
probability of failure Py, or limit state probability, can
be evaluated with the equation:

= P[LS|IM = x]- P[IM > x]

dF, (x)

j H(x)- S gy @)

where H(x) represents the seismic Hazard function,
generally expressed in terms of /M =S, (Song &
Ellingwood 1999), according to the equation:

H(x)=P[S,>x]=1- exp[—(x/y)q 3)

w and k being, parameters determined according to the
characteristics of the site.

In the paper, following the PBSD approach, it is
investigated the seismic performance of a partially-
restrained steel-concrete composite frame constituted
by partially encased composite columns connected to
composite beams with steel profiles and concrete slab
cast on corrugated steel sheathing.

2 THE ANALYSED FRAME

The analysed frame, tested at the Joint Research Centre
of Ispra (Bursi et al. 2004), represents a full-scale two-
storey steel-concrete composite building. The building
is made of three parallel two-bay main frames with dif-
ferent span lengths of 5 m and 7m spaced 3 m one to
another, the interstorey height being 3.5 m. The frames



are connected in the perpendicular direction by sec-
ondary beams pinned at the ends and braced with
only-tension members (Fig. 1a).

The frame was designed according to the Eurocode
4 (CEN 1992) and 8 (CEN 1996) for a PGA of 0.4 g.
The composite columns, partially encased, are made
of steel profiles HEB 260/280 for the exterior/interior
columns, respectively. The main beams are made of an
IPE 300 steel profile connected by means of Nelson
shear studs to the upper 15cm thick concrete slab
poured on a type Brollo EGB 210 corrugated steel
sheathing. The analyses have been carried out for the
intermediate longitudinal frame (Fig. 1b).
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Figure 1. The analysed Structure, (a) spatial view, (b) the
analysed frame.

3 THE PROBABILISTIC ANALYSIS

The probabilistic approach is based on the following
steps:

1. Definition of the most critical source of uncer-
tainty: the seismic event;

2. Modelling of the structure and beam-to-column
connection, including the definition of the sources
of uncertainty;

3. Choice of the model used for the damage evalua-
tion, and definition of the performance levels for
the structure;

4. Execution of the incremental dynamic analyses
with statistical interpretation of the outcomes and
determination of the fragility and collapse curves.

3.1 Choice of the seismic inputs

Since this study is aimed to the determination of the
fragility curves for a structure in a generic earthquake-
prone area, according to Altug & ElnaShai (2004), a
number of 10 recorded earthquake ground motions
has been considered. Such ground motions have been
selected so as to represent a wide range of possible seis-
mic events of relevant intensity (magnitude >5.8). The
indicators of seismic intensity considered when select-
ing the ground motions have been: peak ground accel-
eration, PGA; magnitude Ms; modified Mercalli scale
MM. Table 1 summarizes the characteristics of the
earthquake ground motions selected for the analyses.

3.2 Sources of uncertainty

The possible sources of uncertainty for the frame are:
the geometry of structural parts, the intensity and type
of loads, the mechanical properties of materials, the
type of hysteresis loop of the structural joints and
composite beams. In this paper, the attention has been
focused on the mechanical properties of materials and
their influence on the strength of the joints, the com-
posite beams and the whole frame. Permanent and
variable loads, as well as the geometry of the structure,

Table 1. Characterization of earthquake ground motions.

PGA Sdmax Samax

Earthquake Date Country Station Component Ms MM [g] [em] [g]

GM1 Imperial -Valley  15/05/1940 USA El Centro SO00E 7.1 X/XI 0.348 28.0 0.935
GM2  Friuli 15/09/1976  TItaly Buia N-S 6.1 IX 0.109 9.4 0.327
GM3  Alkoin 24/02/1981 Greece Xilikastro N-S 6.7 IX 0290 20.1 1.018
GM4  Friuli 06/05/1976  Italy Tolmezzo E-W 63 IX 0.315 11.2  1.030
GMS  Tabas 16/09/1978 Iran Boshroych N79E 7.3 1.004 103 0.339
GM6  Campano Lucano 23/11/1980 Italy Irpinia,Calitri E-W 6.7 VII 0.175 18.6 0.595
GM7 Lazio- Abruzzo  07/05/1984 TItaly Cassino-Sant’Elia  N-S 58 vl  0.110 3.8 0.393
GMS8  Kocaeli 17/08/1999 Turkey Yesilkoy N-S 7.8 0.089 16.5 0.366
GM9  Gazli 17/05/1976 Uzbekistan  Gazli E-W 7.0 0.720 504  2.008
GMI10 Montenegro 15/04/1979 Montenegro Bar-S.O. E-W 7.0 0.363 40.6 1.305
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have been regarded as deterministic quantities. The
yield stresses of steel and rebars, and the ultimate
stresses of concrete, bolts and stud connectors have
then been assumed as random variables, characterized
by a statistical distribution.

3.2.1 Construction steel

According to what suggested in Piluso et al. (2003),
the statistical distribution of the yield stress f, has been
assumed as dependent on the thickness of the plates
which make up the profile. It was pointed out that
the lognormal distribution best represents the exper-
imental distribution. Furthermore, the mean of the
logarithm of'the yield stress can be assumed as linearly
dependent on the thickness ¢, with decreasing trend:

E(Inf,)=c, —c,t =5.766 - 0.007 @)

where ¢| and ¢, are material parameters dependent on
the type of steel, 7 is the thickness in mm, and f;, is the
yield stress in N/mm?. Table 2 summarizes the statis-
tical parameters of the random variables assumed for
the beams and columns of the frame tested at Ispra,
where f,, is the mean value of the yield stress, s is
the standard deviation of the yield stress, A and & are,
respectively, the mean value and the standard deviation
for the lognormal distribution:

A=Inf,,-&/2 , E=4/In(COV? +1) 3)

and COV is the coefficient of variation defined as:

Cov =slf,,, (6)

3.2.2 Rebars

For rebars, a lognormal distribution with a COV equal
to 6% has been assumed, according to what suggested
by Erberik & Elnashai (2004).

3.2.3 Concrete

The mean value can be obtained from the characteristic
strength of the material using the equation:

Jem=Lox(A=k-COV), k=164 (7

Table 4 summarises the statistical properties assumed
for concrete.

3.2.4 Bolts

The ultimate tensile strength of bolts has been
considered as normal distributed with mean value
E(f,)=1.2 x f,x, and coefficient of variation of 2%
(Piluso et al. 2003).

3.2.5 Stud connectors between steel beam and
r.c. slab

A normal distribution with coefficient of variation of
4% has been assumed. The mean value of the ultimate
strength has been obtained from the corresponding
characteristic value.

Based on the aforementioned mechanical proper-
ties of the materials, the strengths of joints, regarded

Table 3. Statistical parameters for rebars.

Jom S
Rebars A & cov  [N/mm?] [N/mm?]
Fe b 44k 6.17 0.06 0.06 477.09 28.63
(B450 C)

Table 4.  Statistical parameters for concrete.

fc‘,k fc,m N
Concrete [N/'mm?] COV  [N/mm?] [N/mm?]
Class C25/30  30.36 0.15 38.43 5.76
Table 5. Statistical parameters for bolts.

It is generally accepted in literature that the compres- g 1o ][(g /mm?]  COV ?ﬁfmmz] fN /mm?]
sion strength of concrete (f;.) may be represented by
anormal distribution. Dymitiotis et al. (1999) suggest  (Class 109  1000.00 0.02 1070.0 214
a coefficient of variation of 15% for such a quantity.

Table 2.  Statistical parameters for steel components.

t _f}',m N

Steel components (Fe 360) [mm] A & cov  [N'mm?]  [N/mm?]

Column flange =~ HEB260 17.50 5.64 0.07 0.07 283.1 19.8

Column web HEB260 10.00 570 0.07 0.07 298.4 20.9

Column flange ~ HEB280 18.00 5.64 0.07 0.07 282.2 19.8

Column web HEB 280 1050 5.69 0.07 0.07 297.4 20.8

Beam flange IPE 300 10.70  5.69 0.07 0.07 296.9 20.8

Beam web IPE 300 7.10 572 0.07 0.07 304.5 213

End plate 15.00 5.66 0.07 0.07 288.1 20.2
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Table 6. Statistical parameters for connector studs.

fus,k .ﬁls,n: N
Studs [N/mm?] COV [N/mm?] [N/mm?]
Stud Nelson 3/4"  517.00 0.04 5534 22.1
Table 7. Statistical parameters of the composite beam under
sagging bending moment.
Mp],m N
[KN/m] [KN/m] A 3 cov
426.62 20.38 6.055 0.048 0.05
Table 8. Statistical parameters of the composite beam under

hogging bending moment.

Mpim S
[KN/m] [KN/m] A £ cov
252.79 10.94 5.532 0.043 0.04

as stochastic variables, have been computed through
a Monte Carlo simulation. Since the plastic hinges
may be formed also inside the beams, the same proce-
dure has been applied for the strength of steel-concrete
composite beams.

3.3 Statistical simulation of beams and joints

The Monte Carlo simulation has been used to calculate
the plastic resistant moment of the composite beam
according to the Eurocode 4. 10,000 pseudo-random
values in accordance with the statistical distributions
previously defined have been generated for each ran-
dom variable using the Box and Muller method. The
mean values M, standard deviations s, and coef-
ficients of variation COV of the plastic moments
have then be computed. Some statistical tests, like
the x? and the K-S (Kolmogorov-Smirnov) tests, have
pointed out that the best probability distribution func-
tion fitting with the obtained statistics is the lognormal
one. Obtained results are reported in Tables 7 and 8 for
the 5 m bay composite beam.

The beam-to-column exterior and interior joints
have been schematised using the component models
depicted in Figures (2a) and (2b), respectively.

In this model all the axial springs are characterised
by three-linear relationships with no degrade of stiff-
ness and strength under cyclic loading. The relevant
points of the relationships for the steel and concrete
slab components have been evaluated according to the
Annex J of Eurocode 3 and 4, and according to what
suggested by Faella et al. (2000). The composite joints
have then been analysed using the Abaqus Finite Ele-
ment code (Hibbit et al. 1997). The stratified sampling
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Figure 2. Component model for exterior (a) and interior (b)
joint.

Table 9. Statistical parameters for the composite joints.
Macro-model
Type of joint  Bending M, [kNm] o[kNm] COV
External M=>0 263.86 16.87 0.06
M<0 200.14 9.74 0.05
Internal M>0 178.07 10.09 0.06
M<0 107.34 8.61 0.08

technique, also known as the Latin Hypercube Sam-
pling, has been employed (Olsson et al. 2003). A num-
ber of 200 exterior and 200 interior joints subjected
to positive and negative moments has been analysed.
The statistical tests of x?> and Kolmogorov-Smirnov
have proved that the lognormal probability distribution
function PDF better represents the obtained statistics
of'the joint strengths. The statistical values of the resis-
tant moment in terms of mean value M,., variance o and
coefficient of variation COV are displayed in Table 9.

3.4  Frame analysis

In order to draw the fragility curves of the frame, the
damage parameters must be identified, along with the
values assumed by such quantities when the different
performance levels have been achieved. The damage
indexes considered in this paper are the interstorey
drift angle ISDA, which is given for a frame by:

ISDA = mialx((')‘,- /h;) ®)

where 7 is the number of stories, §; is the interstorey
drift, and 4; the interstorey height, and the global Park
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Table 10. Damageability limit states expressed through the
global Park and Ang and the ISDA index.

Level of damage Dpy ISDA % Consequence

Fragility curve (ISDA)

[

—LS0

LS0: Reduced 0.1 0.5
LS1: Limited 04 1.0
LS2: Significant 08 25
LS3: Near Collapse 1.5 5.0

Usable building
Repairable building
Irrecoverable building
Loss of building

Z 7 2

Figure 3. FE model adopted for the frame.

and Ang parameter Dpy, evaluated for the whole frame
as the weighed average of the local Park and Ang
indexes D; of each plastic hinge formed in the frame,
as given by the equation:

3 Y]
Dy, =) 4D D =-t+———|dE; (9
PA Z, i i i '9” My'v.gu _[ ( )
with > 4 =1; A4=E, /(D E,),

with ) ;A =1; A, =E,;/(D_; E,;), where Uy, is the
largest rotation achieved during the seismic event in
the ith plastic hinge or beam-to-column joint, 9, is the
ultimate rotation of the ith plastic hinge or beam-to-
column joint under monotonic loading, 8 is a parame-
ter assumed as equal to 0.15, M, is the yield moment,
dE,, is the increment of dissipated plastic energy.

With reference to the assumed four levels of dam-
age: “Reduced” LSO, “Limited” LS1, “Significant”
LS2, and “Near Collapse”LS3, the damage index
values shown in Table 10, have been determined.

The analysis has been carried out through the non-
linear FE software SAP2000 version 9 (2004), by using
the FE model depicted in Figure 3.

The beam-to-column joint has been modelled
using a link element with bilinear non-symmetric
moment-rotation relationship, the elastic stiffness
being obtained through the component method. The
strength of the joint has been considered as a random
variable and computed using the statistical simulation
described in the previous paragraph on the basis of the
statistical distribution of the material mechanical prop-
erties. The composite beams have been modelled by
means of elastic beam elements linked one to another
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Figure 4. Fragility curves (ISDA) in terms of S,.

with rigido-plastic rotational springs. The strength of
such springs has been considered as a random variable
and computed using the statistical simulation previ-
ously described. The columns have been modelled with
linear beam elements and connected to the foundation
with an elasto-plastic rotational spring.

The FE model of the frame has been validated
against the results of the pseudo-dynamic tests per-
formed at ISPRA (Bursi et al. 2004). A sample of
15 pseudo-random frames has been generated using
the stratified Latin Hypercube Sampling method,
based on 9 random variables: strength of the column-
to-foundation joint, positive and negative ultimate
moments for the 5 m and 7 m bay beams, positive and
negative ultimate moments for the interior and exterior
beam-to-column joint.

The earthquake, as discussed previously, is the
main source of uncertainty, since the recorded ground
motion is random in terms of peak ground acceleration
PGA, duration, and frequency content. Such uncer-
tainties have been taken into account by subjecting the
15 frames generated above to the 10 recorded ground
motions summarised in Table 1. Each ground motion,
described by the history of ground acceleration, has
been scaled on 10 values of seismic intensity, repre-
sented by the spectral displacement S, evaluated for
the natural period of the structure T =0.506 s. Such
a quantity is commonly regarded as the most stable
and representative parameter of the seismic intensity
(Altug & ElnaShai 2004). The fragility curves have
been obtained as a result of the 1500, (15 x 10 x 10),
nonlinear time-history analyses and of the statistical
treatment of obtained results.

The fragility curves obtained by assuming the /SDA,
and the global Park and Ang indexes as damage param-
eters, are displayed in Figures 4 and 5, respectively.
The trends of the fragility curves in terms of ISDA
demonstrate that the frame is subjected to significant
interstorey drifts even for low seismic intensities. The
collapse strength of the frame (LS3 damage limit state)
predicted using the ISDA parameter is larger than that
obtained using the global Park and Ang index, as can
be noted from Figures 4 and 5.
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Figure 5. Fragility curves (Dpy) in terms of S;.
Table 11. Probability F, of reach of a given damage limit
state for the frame tested at ISPRA.
LSO LS1 LS2 LS3
ISDA Sd 23 mm 42 mm 113mm  175mm
PGA ~0.1g ~0.25g  ~0.6g ~1.0g
Fr 6.02E-02 1.44E-03 1.61E-04 1.35E-05
DPA Sd 23 mm 59 mm 87 mm 126 mm
PGA ~0.1g ~0.35g ~0.45g ~0.75g
Fr 6.05E-02 1.37E-03 1.15E-04 1.04E-05

Table 11 reports the probability F, of reach a given
damage limit state once a seismic event with a pre-
fixed spectral displacement S, is given. The values
corresponding to the medium PGA for the set of
ground motions used in the analyses are also reported.

The probability F, does not represent the actual
probability of failure for the structure since such prob-
ability will also depend on the seismic hazard of the
region where the structure is located. In order to calcu-
late the failure probability, the curve of seismic hazard
must be introduced. Such a curve provides the annual
probability of exceeding of a given seismic intensity
(see eq. 3), which is generally measured by the spectral
acceleration S,. In order to calculate the probability of
failure for the frame under study, the seismic hazard
curve proposed by Song & Ellingwood (1999) for the
state of California has been considered. Such a curve,
represented by eq. (3) with parameters k£ =2.38 and
1 =0.045, provides values of seismic hazard compat-
ible with those of the Irpinia earthquake-prone region
(Italy). The obtained performance curves are displayed
in Figures 6 and 7. They can be considered as the final
outcome of a reliability analysis carried out using a
full probabilistic approach.

4 FINAL REMARKS

In order to evaluate the performance of the compos-
ite frame on the basis of a probabilistic analysis, an
acceptable value of the annual probability of failure
P must be defined for each of the four damage limit
states as: LSO — 1072; LS1 — 1073; LS2 — 10~%;
LS3 — 1075.
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Figure 6. Performance curve of the structure (SDA).
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Figure 7. Performance curve of the structure (DPA).

From figure 7, it can be noted that the frame exhibits
aPofabout6-1073,4-107%,1.4- 1074, and 5- 1073
for the reduced, limited, significant, and near collapse
limit state, respectively. It can be concluded that the
frame is slightly under-designed for the LS3, while it
is slightly over-designed for the reduced and limited
damage limit states. This result is in contrast with the
design of the frame obtained using the static analysis
according to the Eurocode 8 deterministic approach.
In this case, in fact the serviceability limit states are
the most critical conditions.

Another important point revealed by the probabilis-
tic analysis is that the acceptable values for the PGA at
the collapse are around 0.75g (Table 11). Conversely,
the deterministic analysis based on the static pushover
overestimates the resistance of the frame, leading to
PGA larger than 1.3g. Based on the analyses carried
out, it is also possible to assert that the Park and Ang
index represents the structural damage better than the
InterStorey Drift Angle for steel-concrete composite
frames. Such a type of structure is, in fact, charac-
terised by and extensive plasticization of the joints and
composite beams, therefore the Park and Ang index
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which accounts also for the plastic dissipated energy
leads to more homogenous results.
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