157 research outputs found

    A Tamarisk Habitat Suitability Map for the Continental US

    Get PDF
    This paper presents a national-scale map of habitat suitability for a high-priority invasive species, Tamarisk (Tamarisk spp., salt cedar). We successfully integrate satellite data and tens of thousands of field sampling points through logistic regression modeling to create a habitat suitability map that is 90% accurate. This interagency effort uses field data collected and coordinated through the US Geological Survey and nation-wide environmental data layers derived from NASA s MODerate Resolution Imaging Spectroradiometer (MODIS). We demonstrate the utilization of the map by ranking the lower 48 US states (and the District of Columbia) based upon their absolute, as well as proportional, areas of highly likely and moderately likely habitat for Tamarisk. The interagency effort and modeling approach presented here could be applied to map other harmful species in the US and globally

    Atmospheric Correction of Landsat ETM+ Land Surface Imagery: II. Validation and Applications

    Get PDF
    This is the second paper of the series on atmospheric correction of ETM+ land surface imagery. In the first paper, a new algorithm that corrects heterogeneous aerosol scattering and surface adjacency effects was presented. In this study, our objectives are to 1) evaluate the accuracy of this new atmospheric correction algorithm using ground radiometric measurements; 2) apply this algorithm to correct MODIS and SeaWiFS imagery; and 3) demonstrate how much atmospheric correction of ETM+ imagery can improve land cover classification, change detection, and broadband albedo calculations. Validation results indicate that this new algorithm can retrieve surface reflectance from ETM+ imagery accurately. All experimental cases demonstrate that this algorithm can be used for correcting both MODIS and SeaWiFS imagery. Although more tests and validation exercises are needed, it has been proven promising to correct different multispectral imagery operationally. We have also demonstrated that atmospheric correction does matter.This work was supported in part by the U.S. National Aeronautics and Space Administration (NASA) under grants NAG5-6459 and NCC5462

    Flexibility and Fairness in Liberal Market Economies: The Comparative Impact of the Legal Environment and High Performance Work Systems

    Get PDF
    This paper compares management flexibility in employment decision-making in the United States and Canada through a cross-national survey of organizations in representative jurisdictions in each country, Pennsylvania and Ontario respectively, that investigates the impact of differences in their legal environments. The results indicate that, compared to their Ontario counterparts, organizations in Pennsylvania have a higher degree of flexibility in employment outcomes, such as higher dismissal and discipline rates, yet do not experience any greater flexibility or simplicity in management hiring and firing decisions. One explanation for this result may lie in the finding that organizations in Pennsylvania experience greater legal pressures on decision making, reflecting the generally more intense conflict in the employment law system in the United States. By contrast, high performance work systems, which some have looked to as a possible management-driven mechanism for enhancing fairness in employment, had more modest effects

    Revealing Historic Invasion Patterns and Potential Invasion Sites for Two Non-Native Plant Species

    Get PDF
    The historical spatio-temporal distribution of invasive species is rarely documented, hampering efforts to understand invasion dynamics, especially at regional scales. Reconstructing historical invasions through use of herbarium records combined with spatial trend analysis and modeling can elucidate spreading patterns and identify susceptible habitats before invasion occurs. Two perennial species were chosen to contrast historic and potential phytogeographies: Japanese knotweed (Polygonum cuspidatum), introduced intentionally across the US; and mugwort (Artemisia vulgaris), introduced largely accidentally to coastal areas. Spatial analysis revealed that early in the invasion, both species have a stochastic distribution across the contiguous US, but east of the 90th meridian, which approximates the Mississippi River, quickly spread to adjacent counties in subsequent decades. In contrast, in locations west of the 90th meridian, many populations never spread outside the founding county, probably a result of encountering unfavorable environmental conditions. Regression analysis using variables categorized as environmental or anthropogenic accounted for 24% (Japanese knotweed) and 30% (mugwort) of the variation in the current distribution of each species. Results show very few counties with high habitat suitability (≥80%) remain un-invaded (5 for Japanese knotweed and 6 for mugwort), suggesting these perennials are reaching the limits of large-scale expansion. Despite differences in initial introduction loci and pathways, Japanese knotweed and mugwort demonstrate similar historic patterns of spread and show declining rates of regional expansion. Invasion mitigation efforts should be concentrated on areas identified as highly susceptible that border invaded regions, as both species demonstrate secondary expansion from introduction loci

    Validating canopy clumping retrieval methods using hemispherical photography in a simulated Eucalypt forest

    Get PDF
    The so-called clumping factor (Ω) quantifies deviation from a random 3D distribution of material in a vegetation canopy and therefore characterises the spatial distribution of gaps within a canopy. Ω is essential to convert effective Plant or Leaf Area Index into actual LAI or PAI, which has previously been shown to have a significant impact on biophysical parameter retrieval using optical remote sensing techniques in forests, woodlands, and savannas. Here, a simulation framework was applied to assess the performance of existing in situ clumping retrieval methods in a 3D virtual forest canopy, which has a high degree of architectural realism. The virtual canopy was reconstructed using empirical data from a Box Ironbark Eucalypt forest in Eastern Australia. Hemispherical photography (HP) was assessed due to its ubiquity for indirect LAI and structure retrieval. Angular clumping retrieval method performance was evaluated using a range of structural configurations based on varying stem distribution and LAI. The CLX clumping retrieval method (Leblanc et al., 2005) with a segment size of 15° was the best performing clumping method, matching the reference values to within 0.05 Ω on average near zenith. Clumping error increased linearly with zenith angle to > 0.3 Ω (equivalent to a 30% PAI error) at 75° for all structural configurations. At larger zenith angles, PAI errors were found to be around 25–30% on average when derived from the 55–60° zenith angle. Therefore, careful consideration of zenith angle range utilised from HP is recommended. We suggest that plot or site clumping factors should be accompanied by the zenith angle used to derive them from gap size and gap size distribution methods. Furthermore, larger errors and biases were found for HPs captured within 1 m of unrepresentative large tree stems, so these situations should be avoided in practice if possible

    Hypoxia-inducible factor-1alpha is a critical mediator of hypoxia induced apoptosis in cardiac H9c2 and kidney epithelial HK-2 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia inducible factor-1 (HIF-1) is a transcription factor that functions to maintain cellular homeostasis in response to hypoxia. There is evidence that HIF-1 can also trigger apoptosis, possibly when cellular responses are inadequate to meet energy demands under hypoxic conditions.</p> <p>Methods</p> <p>Cardiac derived H9c2 and renal tubular epithelial HK-2 cells expressing either the wild type oxygen regulated subunit of HIF-1 (pcDNA3-Hif-1α) or a dominant negative version that lacked both DNA binding and transactivation domains (pcDNA3-DN-Hif-1α), were maintained in culture and exposed to hypoxia. An RNA interference approach was also employed to selectively knockdown expression of Hif-1α. Apoptosis was analyzed in both H9c2 and HK-2 cells by Hoechst and TUNEL staining, caspase 3 activity assays and activation of pro-apoptotic Bcl2 family member Bax.</p> <p>Results</p> <p>Overexpression of pcDNA3-DN-Hif-1α led to a significant reduction in hypoxia -induced apoptosis (17 ± 2%, <it>P </it>< 0.01) in H9c2 cells compared to both control-transfected and wild type Hif-1α transfected cells. Moreover, selective ablation of HIF-1α protein expression by RNA interference in H9c2 cells led to 55% reduction of caspase 3 activity and 46% reduction in the number of apoptotic cells as determined by Hoechst 33258 staining, after hypoxia. Finally, upregulation of the pro-apoptotic protein, Bax, was found in H9c2 cells overexpressing full-length pcDNA3-HA-HIF-1α exposed to hypoxia. In HK-2 cells overexpression of wild-type Hif-1α led to a two-fold increase in Hif-1α levels during hypoxia. This resulted in a 3.4-fold increase in apoptotic cells and a concomitant increase in caspase 3 activity during hypoxia when compared to vector transfected control cells. HIF-1α also induced upregulation of Bax in HK-2 cells. In addition, introduction of dominant negative Hif-1α constructs in both H9c2 and HK-2 -cells led to decreased active Bax expression.</p> <p>Conclusion</p> <p>These data demonstrate that HIF-1α is an important component of the apoptotic signaling machinery in the two cell types.</p

    Global burned area and biomass burning emissions from small fires

    Get PDF
    [1] In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001–2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia—regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes
    • …
    corecore