173 research outputs found

    Molecular dissection of mRNA poly(A) tail length control in yeast

    Get PDF
    In eukaryotic cells, newly synthesized mRNAs acquire a poly(A) tail that plays several fundamental roles in export, translation and mRNA decay. In mammals, PABPN1 controls the processivity of polyadenylation and the length of poly(A) tails during de novo synthesis. This regulation is less well-detailed in yeast. We have recently demonstrated that Nab2p is necessary and sufficient for the regulation of polyadenylation and that the Pab1p/PAN complex may act at a later stage in mRNA metabolism. Here, we show that the presence of both Pab1p and Nab2p in reconstituted pre-mRNA 3′-end processing reactions has no stimulating nor inhibitory effect on poly(A) tail regulation. Importantly, the poly(A)-binding proteins are essential to protect the mature mRNA from being subjected to a second round of processing. We have determined which domains of Nab2p are important to control polyadenylation and found that the RGG-box work in conjunction with the two last essential CCCH-type zinc finger domains. Finally, we have tried to delineate the mechanism by which Nab2p performs its regulation function during polyadenylation: it likely forms a complex with poly(A) tails different from a simple linear deposit of proteins as it has been observed with Pab1p

    Dual Requirement for Yeast hnRNP Nab2p in mRNA poly(A) Tail Length Control and Nuclear Export

    Get PDF
    Recent studies of mRNA export factors have provided additional evidence for a mechanistic link between mRNA 3′‐end formation and nuclear export. Here, we identify Nab2p as a nuclear poly(A)‐binding protein required for both poly(A) tail length control and nuclear export of mRNA. Loss of NAB2 expression leads to hyperadenylation and nuclear accumulation of poly(A)+ RNA but, in contrast to mRNA export mutants, these defects can be uncoupled in a nab2 mutant strain. Previous studies have implicated the cytoplasmic poly(A) tail‐binding protein Pab1p in poly(A) tail length control during polyadenylation. Although cells are viable in the absence of NAB2 expression when PAB1 is overexpressed, Pab1p fails to resolve the nab2Δ hyperadenylation defect even when Pab1p is tagged with a nuclear localization sequence and targeted to the nucleus. These results indicate that Nab2p is essential for poly(A) tail length control in vivo, and we demonstrate that Nab2p activates polyadenylation, while inhibiting hyperadenylation, in the absence of Pab1p in vitro. We propose that Nab2p provides an important link between the termination of mRNA polyadenylation and nuclear export

    An essential role for Clp1 in assembly of polyadenylation complex CF IA and Pol II transcription termination

    Get PDF
    Polyadenylation is a co-transcriptional process that modifies mRNA 3′-ends in eukaryotes. In yeast, CF IA and CPF constitute the core 3′-end maturation complex. CF IA comprises Rna14p, Rna15p, Pcf11p and Clp1p. CF IA interacts with the C-terminal domain of RNA Pol II largest subunit via Pcf11p which links pre-mRNA 3′-end processing to transcription termination. Here, we analysed the role of Clp1p in 3′ processing. Clp1p binds ATP and interacts in CF IA with Pcf11p only. Depletion of Clp1p abolishes transcription termination. Moreover, we found that association of mutations in the ATP-binding domain and in the distant Pcf11p-binding region impair 3′-end processing. Strikingly, these mutations prevent not only Clp1p-Pcf11p interaction but also association of Pcf11p with Rna14p-Rna15p. ChIP experiments showed that Rna15p cross-linking to the 3′-end of a protein-coding gene is perturbed by these mutations whereas Pcf11p is only partially affected. Our study reveals an essential role of Clp1p in CF IA organization. We postulate that Clp1p transmits conformational changes to RNA Pol II through Pcf11p to couple transcription termination and 3′-end processing. These rearrangements likely rely on the correct orientation of ATP within Clp1p

    Alternative 3′ Pre-mRNA Processing in Saccharomyces cerevisiae Is Modulated by Nab4/Hrp1 In Vivo

    Get PDF
    The Saccharomyces cerevisiae RNA-binding protein Nab4/Hrp1 is a component of the cleavage factor complex required for 3′ pre-mRNA processing. Although the precise role of Nab4/Hrp1 remains unclear, it has been implicated in correct positioning of the cleavage site in vitro. Here, we show that mutation or overexpression of NAB4/HRP1 alters polyA cleavage site selection in vivo. Using bioinformatic analysis, we identified four related motifs that are statistically enriched in Nab4-associated transcripts; each motif is similar to the known binding site for Nab4/Hrp1. Site-directed mutations in predicted Nab4/Hrp1 binding elements result in decreased use of adjacent cleavage sites. Additionally, we show that the nab4-7 mutant displays a striking resistance to toxicity from excess copper. We identify a novel target of alternative 3′ pre-mRNA processing, CTR2, and demonstrate that CTR2 is required for the copper resistance phenotype in the nab4-7 strain. We propose that alternative 3′ pre-mRNA processing is mediated by a Nab4-based mechanism and that these alternative processing events could help control gene expression as part of a physiological response in S. cerevisiae

    PolyA_DB 2: mRNA polyadenylation sites in vertebrate genes

    Get PDF
    Polyadenylation of nascent transcripts is one of the key mRNA processing events in eukaryotic cells. A large number of human and mouse genes have alternative polyadenylation sites, or poly(A) sites, leading to mRNA variants with different protein products and/or 3′-untranslated regions (3′-UTRs). PolyA_DB 2 contains poly(A) sites identified for genes in several vertebrate species, including human, mouse, rat, chicken and zebrafish, using alignments between cDNA/ESTs and genome sequences. Several new features have been added to the database since its last release, including syntenic genome regions for human poly(A) sites in seven other vertebrates and cis-element information adjacent to poly(A) sites. Trace sequences are used to provide additional evidence for poly(A/T) tails in cDNA/ESTs. The updated database is intended to broaden poly(A) site coverage in vertebrate genomes, and provide means to assess the authenticity of poly(A) sites identified by bioinformatics. The URL for this database is

    The P-Loop Domain of Yeast Clp1 Mediates Interactions Between CF IA and CPF Factors in Pre-mRNA 3′ End Formation

    Get PDF
    Cleavage factor IA (CF IA), cleavage and polyadenylation factor (CPF), constitute major protein complexes required for pre-mRNA 3′ end formation in yeast. The Clp1 protein associates with Pcf11, Rna15 and Rna14 in CF IA but its functional role remained unclear. Clp1 carries an evolutionarily conserved P-loop motif that was previously shown to bind ATP. Interestingly, human and archaean Clp1 homologues, but not the yeast protein, carry 5′ RNA kinase activity. We show that depletion of Clp1 in yeast promoted defective 3′ end formation and RNA polymerase II termination; however, cells expressing Clp1 with mutant P-loops displayed only minor defects in gene expression. Similarly, purified and reconstituted mutant CF IA factors that interfered with ATP binding complemented CF IA depleted extracts in coupled in vitro transcription/3′ end processing reactions. We found that Clp1 was required to assemble recombinant CF IA and that certain P-loop mutants failed to interact with the CF IA subunit Pcf11. In contrast, mutations in Clp1 enhanced binding to the 3′ endonuclease Ysh1 that is a component of CPF. Our results support a structural role for the Clp1 P-loop motif. ATP binding by Clp1 likely contributes to CF IA formation and cross-factor interactions during the dynamic process of 3′ end formation

    Structure of the Rna15 RRM–RNA complex reveals the molecular basis of GU specificity in transcriptional 3′-end processing factors

    Get PDF
    Rna15 is a core subunit of cleavage factor IA (CFIA), an essential transcriptional 3′-end processing factor from Saccharomyces cerevisiae. CFIA is required for polyA site selection/cleavage targeting RNA sequences that surround polyadenylation sites in the 3′-UTR of RNA polymerase-II transcripts. RNA recognition by CFIA is mediated by an RNA recognition motif (RRM) contained in the Rna15 subunit of the complex. We show here that Rna15 has a strong and unexpected preference for GU containing RNAs and reveal the molecular basis for a base selectivity mechanism that accommodates G or U but discriminates against C and A bases. This mode of base selectivity is rather different to that observed in other RRM-RNA structures and is structurally conserved in CstF64, the mammalian counterpart of Rna15. Our observations provide evidence for a highly conserved mechanism of base recognition amongst the 3′-end processing complexes that interact with the U-rich or U/G-rich elements at 3′-end cleavage/polyadenylation sites

    A role for SSU72 in balancing RNA polymerase II transcription elongation and termination

    Full text link
    Interactions of pre-mRNA 3&prime;end factors and the CTD of RNA polymerase II (RNAP II) are required for transcription termination and 3&prime;end processing. Here, we demonstrate that Ssu72p is stably associated with yeast cleavage and polyadenylation factor CPF and provide evidence that it bridges the CPF subunits Pta1p and Ydh1p/Cft2p, the general transcription factor TFIIB, and RNAP II via Rpb2p. Analyses of ssu72-2 mutant cells in the absence and presence of the nuclear exosome component Rrp6p revealed defects in RNAP II transcription elongation and termination. 6-azauracil, that reduces transcription elongation rates, suppressed the ssu72-2 growth defect at 33&deg;C. The sum of our analyses suggests a negative influence of Ssu72p on RNAP II during transcription that affects the commitment to either elongation or termination.<br /

    Crystal structure of the 25 kDa subunit of human cleavage factor Im

    Get PDF
    Cleavage factor Im is an essential component of the pre-messenger RNA 3′-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein–protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic α/β/α fold and a conserved catalytic sequence or Nudix box. We present here the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Å, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3′-end processing

    The interaction of Pcf11 and Clp1 is needed for mRNA 3′-end formation and is modulated by amino acids in the ATP-binding site

    Get PDF
    Polyadenylation of eukaryotic mRNAs contributes to stability, transport and translation, and is catalyzed by a large complex of conserved proteins. The Pcf11 subunit of the yeast CF IA factor functions as a scaffold for the processing machinery during the termination and polyadenylation of transcripts. Its partner, Clp1, is needed for mRNA processing, but its precise molecular role has remained enigmatic. We show that Clp1 interacts with the Cleavage–Polyadenylation Factor (CPF) through its N-terminal and central domains, and thus provides cross-factor connections within the processing complex. Clp1 is known to bind ATP, consistent with the reported RNA kinase activity of human Clp1. However, substitution of conserved amino acids in the ATP-binding site did not affect cell growth, suggesting that the essential function of yeast Clp1 does not involve ATP hydrolysis. Surprisingly, non-viable mutations predicted to displace ATP did not affect ATP binding but disturbed the Clp1–Pcf11 interaction. In support of the importance of this interaction, a mutation in Pcf11 that disrupts the Clp1 contact caused defects in growth, 3′-end processing and transcription termination. These results define Clp1 as a bridge between CF IA and CPF and indicate that the Clp1–Pcf11 interaction is modulated by amino acids in the conserved ATP-binding site of Clp1
    corecore