94 research outputs found

    Experimental salt marsh islands: a model system for novel metacommunity experiments

    Get PDF
    Shallow tidal coasts are characterised by shifting tidal flats and emerging or eroding islands above the high tide line. Salt marsh vegetation colonising new habitats distant from existing marshes are an ideal model to investigate metacommunity theory. We installed a set of 12 experimental salt marsh islands made from metal cages on a tidal flat in the German Wadden Sea to study the assembly of salt marsh communities in a metacommunity context. Experimental plots at the same elevation were established within the adjacent salt marsh on the island of Spiekeroog. For both, experimental islands and salt marsh enclosed plots, the same three elevational levels were realised while creating bare patches open for colonisation and vegetated patches with a defined transplanted community. One year into the experiment, the bare islands were colonised by plant species with high fecundity although with a lower frequency compared to the salt marsh enclosed bare plots. Initial plant community variations due to species sorting along the inundation gradient were evident in the transplanted vegetation. Competitive exclusion was not observed and is only expected to unfold in the coming years. Our study highlights that spatially and temporally explicit metacommunity dynamics should be considered in salt marsh plant community assembly and disassembly

    The acquisitive–conservative axis of leaf trait variation emerges even in homogeneous environments

    Get PDF
    The acquisitive-conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence of strong environmental variation.Methods: We analysed covariation of four leaf functional traits (SLA: specific leaf area, LDMC: leaf dry matter content, Ft: force to tear, and Nm: leaf nitrogen content) in six Poaceae and four Fabaceae species common in the dry Chaco forest of Central Argentina, growing in the field and in a common garden. We compared intraspecific covariation patterns (slopes, correlation and effect size) of leaf functional traits with global interspecific covariation patterns. Additionally, we checked for possible climatic and edaphic factors that could affect the intraspecific covariation pattern.Key Results: We found negative correlations for the LDMC-SLA, Ft-SLA, LDMC-Nm , and Ft-Nm trait pairs. This intraspecific covariation pattern found both in the field and in the common garden and not be explained by climatic or edaphic variation in the field follows the expected acquisitive-conservative axis. At the same time, we found quantitative differences in slopes among different species, and between these intraspecific patterns and the interspecific ones. Many of these differences seem to be idiosyncratic, but some appear consistent among species (e.g.all the intraspecific LDMC-SLA and LDMC-Nm slopes tend to be shallower than the global).Conclusions: Our study indicates that the acquisitive-conservative leaf functional trait covariation pattern occurs at the intraspecific level even in the absence of relevant environmental variation in the field. This suggests a high degree of variation-covariation in leaf functional traits not driven by environmental variables.Fil: Gorne, Lucas DamiĂĄn. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales; ArgentinaFil: DĂ­az, Sandra Myrna. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto Multidisciplinario de BiologĂ­a Vegetal; Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales; ArgentinaFil: Minden, Vanessa. University of Oldenburg; Alemania. Vrije Universiteit Brussel; BĂ©lgicaFil: Onoda, Yusuke. Kyoto University. School of Agriculture; JapĂłnFil: Kramer, Koen. Wageningen University; PaĂ­ses BajosFil: Muir, Christopher. University Of Hawaii; Estados UnidosFil: Michaletz, Sean T. University of British Columbia; CanadĂĄFil: Lavorel, Sandra. Centre National de la Recherche Scientifique; FranciaFil: Sharpe, Joanne. Sharplex Services, Edgecomb; Estados UnidosFil: Jansen, Steven. Universitat Ulm; AlemaniaFil: Slot, Martijn. Smithsonian Tropical Research Institute; PanamĂĄFil: Chacon, Maximiliano Eduardo. Universidad de Costa Rica; Costa RicaFil: Boenisch, Gerhard. Max Planck Institute For Biogeochemistry; Alemani

    Multiple Facets of Biodiversity Drive the Diversity-Stability Relationship

    Get PDF
    A significant body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland ecosystems. However, the relative importance of different facets of biodiversity underlying the diversity–stability relationship remains unclear. Here we used data from 39 biodiversity experiments and structural equation modeling to investigate the roles of species richness, phylogenetic diversity, and both the diversity and community-weighted mean of functional traits representing the ‘fast–slow’ leaf economics spectrum in driving the diversity–stability relationship. We found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony. Contrary to our hypothesis, low phylogenetic diversity also enhances ecosystem stability directly, albeit weakly. While the diversity of fast–slow functional traits has a weak effect on ecosystem stability, communities dominated by slow species enhance ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Our results demonstrate that biodiversity influences ecosystem stability via a variety of facets, thus highlighting a more multicausal relationship than has been previously acknowledged

    Mapping local and global variability in plant trait distributions

    Get PDF
    Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration - specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ∌50×50-km cells across the entire vegetated land surface. We do this in several ways - without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Comparison of native and non-native Impatiens species across experimental light and nutrient gradients

    No full text
    Background and aims – The success of invasive species over resident species is often assigned to their trait attributes and their ability to respond plastically towards fluctuating environmental conditions. To elucidate the role of differentiated trait responses towards environmental conditions promoting invasion success, we conducted a congeneric study with three Impatiens species, one of which is native to Central Europe ( I. noli-tangere ), while the other two are introduced and considered invasive ( I. parviflora and I. glandulifera ). We hypothesised that plasticity in plant traits increases from high resource environments to low resource environments, and we expected the two invasive species to exhibit higher trait plasticity than the native species.Methods – Monocultures of the three species were grown in pots with nine combinations of light and nutrient availability (ambient, medium and high light plus N-limited, balanced and P-limited). We then measured species responses with respect to biomass allocation traits, growth rates and reproduction. We conducted multivariate analysis of trait responses via path analysis and structural equation modelling, and determined phenotypic plasticity indices (PIs) for plant traits across the nine treatments.Key results – The performance of invasive Impatiens species is more prone to unfavourable nutrient conditions than to adverse light conditions. Following our initial model, we expected similar trait responses and trait-trait relationships for the three species, regardless of absolute biomass allocation patterns or whether they were native or non-native. Instead, we found that the three congeneric Impatiens species exhibited contrasting responses to light and nutrient treatments, leading to different trait-trait relationships. Specifically, I. noli-tangere and I. parviflora exhibited similar responses and trait-trait relationships, whereas those of I. glandulifera differed. Treatment effects on plant traits showed that the non-native I. parviflora was the most plastic species; however, this result was not consistent across all traits.Conclusions – The success of invasive species over their native congeners is based on a combination of similar trait responses to environmental site conditions, but the invasive species exhibit higher trait plasticity, facilitating establishment

    Dryad - NPK Experiment

    No full text
    Metadata (species names, functional groups) and information on experimental design (type of varied nutrient). Dates of start and end of the experiment for each pot. Measured traits with units

    Adaptive plasticity and fitness costs of endangered, nonendangered, and invasive plants in response to variation in nitrogen and phosphorus availabilities

    No full text
    Global change drivers such as eutrophication and plant invasions will create novel environments for many plant species. Through adaptive trait plasticity plants may maintain their performance under these novel conditions and may outcompete those showing low-adaptive trait plasticity. In a greenhouse study, we determined if plasticity in traits is adaptive or maladaptive in endangered, nonendangered, and invasive plant species in response to variation of nitrogen (N) and phosphorus (P) availability (N:P ratios 1.7, 15, and 135) and whether plastic trait responses are adaptive and/or costly for fitness (i.e., biomass). Species choice comprised 17 species from three functional groups (legumes, nonlegume forbs, and grasses), either classified as endangered, nonendangered, or invasive. After 2 months, plants were harvested and nine traits related to carbon assimilation and nutrient uptake were measured (leaf area, SLA, LDMC, SPAD, RMR, root length, SRL, root surface area, and PME activity). We found more traits responding plastically to variation in P than in N. Plasticity only created costs when P was varied. Plasticity in traits was mostly adaptively neutral toward fitness, with plasticity in three traits being similarly adaptive across all species groups: SPAD (as a measure of chlorophyll content, adaptive to N and P limitation), leaf area, and root surface area (adaptive to P limitation). We found little differences in trait plasticity between endangered, nonendangered, and invasive species. Synthesis. Along a gradient from N limitation, balanced N:P supply, and P limitation, we found that the type of fluctuating nutrient (i.e., if N or P is varied) is decisive for the adaptive value of a trait. Variation in P availability (from balanced supply to P limitation) created both a stronger reduction in fitness as well as created plasticity costs in more traits than variation in N availability (from balanced supply to N limitation). However, the patterns observed in our study may change if nutrient availability is altered, either by nutrient inputs or by a shift in nutrient availabilities, for example, by decreasing N input as foreseen by European Legislation, but without simultaneously decreasing P input
    • 

    corecore