
 
 
 
 
 
Balke, T. , Lõhmus, K., Hillebrand, H., Zielinski, O., Haynert, K., Meier, 

D., Hodapp, D., Minden, V. and Kleyer, M. (2017) Experimental salt marsh 

islands: a model system for novel metacommunity experiments. Estuarine, 

Coastal and Shelf Science, 198(Part A), pp. 288-

298.(doi:10.1016/j.ecss.2017.09.021) 

 

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 
http://eprints.gla.ac.uk/148754/  

                    
 
 
 
 
 

 
Deposited on: 25 September 2017 

 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk  
 

http://dx.doi.org/10.1016/j.ecss.2017.09.021
http://eprints.gla.ac.uk/


1 
 

Experimental salt marsh islands: a model system 1 

for novel metacommunity experiments   2 

Balke, Thorsten1,2*; Lõhmus, Kertu1; Hillebrand, Helmut3; Zielinski, Oliver4
; Haynert, Kristin5

; 3 

Meier, Daniela3
; Hodapp, Dorothee3; Minden, Vanessa 1,6

; Kleyer, Michael1  4 

 5 

1Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg 26129, 6 

Germany  7 

2School of Geographical and Earth Sciences, University of Glasgow, G128QQ, UK 8 

3Institute for Chemistry and Biology of the Marine Environment (ICBM), University of 9 

Oldenburg, Oldenburg 26129, Germany 10 

4Institute for Chemistry and Biology of the Marine Environment (ICBM), University of 11 

Oldenburg, Wilhelmshaven 26382, Germany 12 

5J. F. Blumenbach Institute for Zoology and Anthropology, Georg August University Göttingen, 13 

37073 Göttingen, Germany 14 

6Department of Biology, Ecology and Biodiversity, Vrije Universiteit Brussel, 1050 Brussels, 15 

Belgium 16 

 17 

 18 

 19 

*Corresponding author: Thorsten Balke, thorsten.balke@glasgow.ac.uk,  20 

Present address: School of Geographical and Earth Sciences, University of Glasgow, Glasgow 21 

G128QQ, United Kingdom  22 



2 
 

Abstract: 23 

Shallow tidal coasts are characterised by shifting tidal flats and emerging or eroding islands 24 

above the high tide line. Salt marsh vegetation colonising new habitats distant from existing 25 

marshes are an ideal model to investigate metacommunity theory. We installed a set of 12 26 

experimental salt marsh islands made from metal cages on a tidal flat in the German Wadden 27 

Sea to study the assembly of salt marsh communities in a metacommunity context. 28 

Experimental plots at the same elevation were established within the adjacent salt marsh on the 29 

island of Spiekeroog. For both, experimental islands and salt marsh enclosed plots, the same 30 

three elevational levels were realised while creating bare patches open for colonisation and 31 

vegetated patches with a defined transplanted community. One year into the experiment, the 32 

bare islands were colonised by plant species with high fecundity although with a lower 33 

frequency compared to the salt marsh enclosed bare plots. Initial plant community variations 34 

due to species sorting along the inundation gradient were evident in the transplanted vegetation. 35 

Competitive exclusion was not observed and is only expected to unfold in the coming years. 36 

Our study highlights that spatially and temporally explicit metacommunity dynamics should be 37 

considered in salt marsh plant community assembly and disassembly. 38 

 39 

Keywords: niche, priority effects, dispersal, Wadden Sea, transplants, competition, patch 40 

dynamics, species sorting. 41 

 42 

  43 
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Introduction 44 

Species composition and ecosystem functioning in aquatic and terrestrial ecosystems 45 

cannot be understood by studying local processes alone. Local competitive and trophic 46 

interactions have to be studied in a metacommunity context as communities on habitat patches 47 

that are connected with each other by dispersal (Amarasekare and Nisbet, 2001; Holyoak et al., 48 

2005; Leibold et al., 2004). Metacommunity theory has increasingly gained attention since the 49 

1990s (Wilson, 1992) and amends classical ecological theory by acknowledging the spatial 50 

dynamics of species and alleviating the assumption that local communities are regulated by 51 

local niche processes alone (Hillebrand and Blenckner, 2002; Leibold et al., 2004; Shurin and 52 

Allen, 2001). To date few field experiments have tried to investigate its basic principles despite 53 

the importance of habitat fragmentation and shifting species ranges with climate change (Logue 54 

et al., 2011; Grainger and Gilbert, 2016). Here we present the first year’s results of a real scale 55 

metacommunity field experiment using salt marsh islands as a model system. 56 

Local niche partitioning should dominate community assembly when assuming 57 

unlimited dispersal, large population size and stable environmental conditions. This means that 58 

in a heterogeneous environment species are not restricted to filling their respective niches 59 

(Leibold et al., 2004). Under dispersal limitation however community assembly may be 60 

dominated by species with high dispersal ability, especially when competitive species with poor 61 

dispersability are not able to fill in their respective niche. Dispersal limitation in a 62 

metacommunity may therefore lead to different or delayed assembly sequences compared to 63 

situations with unlimited dispersal (Drake, 1991; Fukami et al., 2005) and is thus suggested to 64 

affect local biodiversity (Mouquet and Loreau, 2003) and ecosystem properties (Koerner et al., 65 

2008). Environmental change often generates succession where resident (i.e. already present) 66 

species are eventually replaced by better adapted colonising species. Species composition at a 67 

given time therefore depends on the elapsed time since environmental change occurred, the 68 

persistence of the residents and the dispersal and competitive abilities of newly arriving species 69 

(Lindborg and Eriksson, 2004). Bare unoccupied patches may get colonised more rapidly by a 70 

newly arriving species compared to already occupied patches where priority effects (i.e. earlier 71 

presence of a particular species and the effect of species arrival sequences) may prevent 72 

subsequent colonisation and establishment (Loeuille and Leibold, 2008). Such usually 73 

deterministic changes in species composition may become stochastic when short term 74 

variability of the environmental conditions continuously interrupts the directional development 75 
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of the community. Competitive traits and trait based sorting of species may become secondary 76 

in stochastic community assemblies.  77 

Modelling has been the predominant tool to explore community assembly in a 78 

metacommunity context (Kneitel and Chase, 2004; Mouquet and Loreau, 2002; Shoemaker and 79 

Melbourne, 2016) with little empirical evidence (Grainger and Gilbert, 2016; Logue et al., 80 

2011). The majority of metacommunity experiments deal with the disassembly of communities 81 

after experimental fragmentation (Haddad et al., 2015), where researchers often observe a slow 82 

decline of species richness towards a new equilibrium (Gonzalez, 2000). Only few in situ 83 

experiments have studied metacommunity assembly mechanisms exposed to stochasticity of 84 

environmental conditions (Mouquet et al., 2004; Resasco et al., 2014).  85 

Salt marshes have increasingly gained attention in times of climate change with ongoing 86 

discussions about whether marsh accretion can keep pace with accelerated sea level rise 87 

(Kirwan et al., 2016). Within this climate change debate there is a knowledge gap about how 88 

local succession of salt marsh communities due to drowning or emergence interacts with 89 

processes at the metacommunity scale (e.g. fragmentation due to habitat loss or changes in tidal 90 

currents/dispersal vectors). The shallow tidal Wadden Sea coast is characterised by emergence 91 

and erosion of salt marsh habitat often creating small vegetated island patches disconnected 92 

from the mainland or from other back barrier islands. These salt marsh patches are only 93 

connected with each other through hydrochorous seed dispersal (Wolters et al., 2004) and 94 

species sorting is driven by an elevational gradient of flooding, disturbance and salinity 95 

(Bertness and Leonard, 1997). Salt marshes are therefore an ideal model system to study 96 

metacommunity theory as fragmentation and dispersal limitation interact with species sorting 97 

along environmental gradients. 98 

The elevational border between tidal flat habitats with predominantly marine organisms 99 

and the habitat of terrestrial salt marsh plant species is located at around Mean High Water of 100 

Neap Tides (MHWN) (Balke et al., 2016). European salt marsh plant communities follow a 101 

clear elevational gradient with the pioneer zone, the lower saltmarsh zone and the upper 102 

saltmarsh zone (see Petersen et al., 2014). Salt marsh plants at low elevations are dominated by 103 

flooding and salt tolerant species with little competitive capacity whereas communities of the 104 

high salt marsh zone are dominated by less stress tolerant species with higher competitive 105 

strength (Armstrong et al., 1985; Minden et al., 2012; Snow and Vince, 1984). This has been 106 

confirmed by transplanting experiments (Bertness and Ellison, 1987; Crain et al., 2004; 107 

Pennings et al., 2005). It is currently unknown how fragmentation and potential dispersal 108 
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limitation would affect species sorting along an elevational gradient whereas dispersal effects 109 

have been shown to interact with post dispersal filters (e.g. habitat suitability) to determine 110 

plant community assembly in salt marshes (Rand, 2000) 111 

Experimental in situ approaches to metacommunity research require direct or indirect 112 

control of dispersal rates and environmental conditions while maintaining full exposure to 113 

environmental stochasticity and disturbance. Salt marsh communities with their environmental 114 

species sorting are ideal study systems but in situ metacommunity experiments are so far 115 

lacking due to the high costs and technical difficulties of creating isolated and replicable salt 116 

marsh habitat patches on the tidal flat. With the present study we demonstrate the first in situ 117 

metacommunity experiment using salt marsh islands as a model system. Twelve experimental 118 

salt marsh islands were constructed at the mesotidal Wadden Sea coast of Germany and were 119 

either planted with salt marsh vegetation or kept bare for primary colonisation. In addition to 120 

the experimental islands, areas within the salt marsh were stripped off their existing vegetation 121 

cover and kept bare or planted with vegetation from lower or higher elevations. This allows the 122 

comparison of assembly and disassembly of communities in direct vicinity to their source 123 

population compared to a more isolated island location. We hypothesize that the increased 124 

flooding and salinity stress will lead to relatively rapid extinction of plant species transplanted 125 

from higher elevations to the pioneer zone. The salt marsh plants transplanted to the upper salt 126 

marsh elevations are however expected to disappear more slowly and only after the arrival of 127 

superior competitors. This process is expected to be delayed even further on the islands with 128 

limited arrival and establishment of competitors whereas the associated time scales are currently 129 

unknown.  130 

Our experiment aims to answer three main questions: (1) How strongly does the 131 

assembly of isolated salt marsh communities differ from the assembly of communities 132 

assembled directly neighbouring existing habitats? (2) How quickly do resident species recede 133 

when environmental stress increases or superior competitors establish (3) How strong are new 134 

colonisers affected by already present occupants? With this paper we provide the first results 135 

of the immediate plant community changes after one year.  136 

 137 

Methods 138 

Location  139 
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A series of 12 experimental islands were set up in September 2014 on the back-barrier 140 

tidal flat of Spiekeroog Island in the German East Frisian Wadden Sea (E 7°43’30’’, N 141 

53°45’31’’; Fig. 1). The Spiekeroog back barrier tidal flats have a mean tidal range of 2.7 m 142 

and are predominantly sandy. A nearby permanent monitoring platform records hydrographic 143 

and biogeochemical parameters (Reuter et al., 2009) and a tide gauge is operated by WSA-144 

Emden (Wasserstrassen- und Schifffahrtsamt Emden) (Fig. 1B).  145 

 146 

Fig. 1. The Wadden Sea coast of Germany (A) and the Island of Spiekeroog (B). The red marker 147 

indicates the location of the tide gauge and permanent monitoring station. The location of the 148 

experimental islands and their geotextile foundation on the tidal flat (C) and the salt marsh 149 

enclosed plots in the Pioneer zone (Pio), Lower Salt Marsh zone (Low) and Upper Salt Marsh 150 

zone (Upp) (D). The numbering in the salt marsh is repeated for each zone (upp, low, pio) from 151 

East to West similar to the islands. Transplanted treatments in the salt marsh and on the 152 
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experimental islands are marked by odd numbers and bare treatments by even numbers. Six 153 

control plots (marked as C) per zone are located between the manipulated salt marsh plots.  154 

 155 

Experimental design 156 

The experiment consists of two treatments (transplanted and bare) across salt marsh 157 

enclosed and experimental island plots with six replicates for each of three elevational zones. 158 

Each island is a one treatment only replicate with three levels. Each level is situated at the same 159 

elevation as the zones of the nearby salt marsh: pioneer zone (pio), lower salt marsh (low), 160 

upper salt marsh (upp). The salt marsh enclosed plots are located on the Island of Spiekeroog 161 

North of the experimental islands (Fig. 1C). To study the changes in existing plant communities, 162 

one set of plots were filled with transplanted sods of the lower salt marsh zone taken from the 163 

salt marsh nearby (‘transplanted treatment’, experimental islands and plots with odd numbers 164 

Fig. 1C and 1D, Fig. 2). The bare treatment consists of islands and salt marsh enclosed plots 165 

filled with the sediment from the tidal flat (plots with even numbers Fig. 1 C). All existing 166 

vegetation was removed from the salt marsh enclosed plots prior to filling the plots with tidal 167 

flat sediment. Six reference plots in each salt marsh zone located between the manipulated plots 168 

were designated to serve as an undisturbed control in addition to the manipulated plots (Fig. 169 

1D). Each replicate plot is 2x2 m in size. To avoid potential negative impacts of  destructive 170 

survey techniques, two subplots of 1x1 m were randomly allocated for non-destructive surveys 171 

(i.e. vegetation surveys, seedling counts etc.) and two subplots of 1x1 m were allocated for 172 

destructive surveys (e.g. sediment coring etc.).  173 

 174 



8 
 

Fig. 2. Experimental design with three elevations (i.e. salt marsh zones) across 175 

experimental islands and salt marsh enclosed plots. Each treatment is replicated six times. The 176 

plots were either filled with sediment (bare, even numbers in Fig. 1), transplanted with sods 177 

from lower salt marsh areas nearby (transplanted, odd numbers in Fig. 1) or left untouched as 178 

control treatment (reference). ‘Upper’, ‘Lower’, ‘Pioneer’ and ‘Bare’ refer to the present 179 

vegetation type at the start of the experiment. 180 

Experimental islands  181 

All 12 experimental islands were positioned at the same elevation between 80-85 cm 182 

NHN (NHN = standard elevation zero) and stretch out over 810 m from NW to SE on the tidal 183 

flat (Fig. 1C). The distance between the experimental islands and the salt marsh on Spiekeroog 184 

varies between 240 m in the West and 460 m in the East as the tidal flat profile steepens from 185 

East to West. The experimental islands are located between 60 m and 120 m apart from each 186 

other, as they had to be placed in between the shallow tidal creeks which run from NE to SW. 187 

The experimental islands were oriented parallel to these channels with the lower elevational 188 

levels facing the island of Spiekeroog. 189 

Each of the 12 islands is made of 12 steel cages (5 mm thick hot-dip galvanised steel) 190 

with 4 cages per elevational level (dimensions of each cage = 100 cm x 100 cm x height of 191 

pioneer level: 70 cm, lower salt marsh level: 100 cm and upper salt marsh level: 130 cm). These 192 

cages were assembled on site into a 2 m x 6 m large island (Fig. 3A). The height of the cages 193 

minus 10 cm corresponds to the elevation of the salt marsh plots. Each cage is lined vertically 194 

with a geotextile (Huesker HaTe A 1000) fixed at the top of the cage and two polyethylene (PE) 195 

bags with 0.14 mm thickness fixed at 50 cm for shorter, 70 cm for intermediate and 80 cm for 196 

taller cages. The PE bags retain the soil water with groundwater levels typical for nearby salt 197 

marshes. The geotextile allows the soil water above the upper border of the PE bags to drain 198 

through the cage. The cages were filled manually with sediment from the surrounding tidal flat, 199 

moving 144 m³ sediment. Each island has a set of reflexed steel shields on top of the cages to 200 

protect the sediment from wave scouring during inundation (Fig. 3C). Six islands were filled 201 

up to 10 cm below the top of each cage to create bare islands (Fig. 3D). Six islands were 202 

additionally planted with sods from the lower salt marsh on top of the tidal flat sediment (Fig. 203 

3E). The shields are perforated at the sides and placed with a gap of 10 cm at the front of each 204 

elevational step (see Fig. 3C) to allow import and export of small drift material. To protect the 205 

islands from scouring at their base, all islands are placed in the centre of an 8 m x 12 m 206 

geotextile (Huesker HaTe®- E 1200 C) joined with hot-dip galvanised steel gratings. The cages 207 
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were secured with the steel gratings which were in turn secured with earth anchors (Duckbill 208 

68) inserted >1 m deep in the tidal flat around their edges.   209 

 210 

 211 

 212 

Fig. 3. A) The design of the experimental islands with plastic liners to retain 213 

groundwater levels and geotextile to retain the sediment within the islands. The foundation of 214 

the islands is made up of a geotextile and metal gratings secured with soil anchors. B) 215 

Experimental islands at high tide. C) Experimental island at low tide. D) Initially bare island 216 

after one year D) Transplanted lower salt marsh vegetation on an experimental island. 217 

Salt marsh plots 218 

The salt marsh plots are mirroring the treatments on the experimental islands but are 219 

enclosed by a potential source population. They were established on a stretch of 90 m from NW 220 
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to SE (Fig. 1D). Plots of 2 m x 2 m were marked with bamboo poles in the salt marsh. The 221 

vegetation was removed in the bare and transplanted plots to a depth of 30 cm and either filled 222 

with sandy tidal flat sediment or approximately 20 x 20 x 30 cm sods of lower salt marsh 223 

vegetation according to the assigned treatment. The outside border of each plot was lined with 224 

permeable root barrier with 50 g/m2 strength to a depth of 30 cm to avoid vegetative 225 

colonisation of the plots. The control plots remained untouched.  226 

Abiotic monitoring 227 

Six HOBO® U20L Water Level Logger (onset® HOBO® Data Loggers, Bourne/ 228 

MA/USA) were deployed in dip wells within the island and salt marsh plots at each elevation 229 

to measure groundwater level and flooding. In total six DEFI-T temperature logger (JFE 230 

Advantech Co., Ltd., Tokyo/Japan) were installed at the sediment surface at island and salt 231 

marsh plots at all elevations. An RBRduo TD | wave sensor (RBR Ltd., Ontario/Canada) was 232 

installed on the tidal flat and its elevation was determined relative to each island using a 233 

Differential GPS. The wave sensors measured in 10 minute intervals with 1024 samples per 234 

burst at a 3 Hz sampling rate.  235 

Surface elevation change (i.e. sedimentation – erosion) on top of the sediment within 236 

the island plots was measured from the top of the cage, measuring the minimum and maximum 237 

distance from the sediment surface. A marker plate was buried in each bare salt marsh plot at 238 

approximately 30 cm depth and marked with four 1 mm thick wires at the edges. A 3 mm 239 

diameter metal rod was inserted in the sediment to repeatedly record the distance from the 240 

sediment surface to the plate at five fixed locations for each plate. Elevation change was then 241 

averaged over the five points. Surface elevation change is therefore measured in relation to the 242 

bottom of the experimental island or in relation to the marker plate in the salt marsh plots. 243 

 244 

Vegetation survey and data analysis 245 

Vegetation was surveyed for two squares of 1 x 1 m within the 2 x 2 m experimental 246 

plots that were randomly assigned at the start of the experiment for permanent non-destructive 247 

surveys. Plant species presence/absence was recorded for each 10 x 10cm area within 0.9 x 0.9 248 

m quadrants placed at the centre of the plot, for a total of 486 areas in 6 replicates.. Plant surveys 249 

were conducted directly after installing the experiment in September 2014 and after one year in 250 

September 2015. Additional repeated surveys were carried out for Salicornia spp. in all bare 251 

salt marsh enclosed plots. Monthly photographs were taken with a digital SLR camera between 252 
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April and August 2015. All Salicornia spp. individuals were individually marked and counted 253 

from the photographs. On 14th of July and 14th of August the heights of all Salicornia spp. 254 

individuals were measured in both non-destructively sampled subplots of plot number 12 of 255 

each salt marsh zone (Fig. 1D) as pattern were consistent across plots at the same elevation.  256 

 257 

For the statistical analysis, we have chosen seven species that are characteristic for the 258 

different zones: Salicornia spp., Suaeda maritima and Spartina anglica for the pioneer zone, 259 

Limonium vulgare, Atriplex portulacoides and Puccinellia maritima for the lower salt marsh 260 

zone and Elytrigia atherica for the upper salt marsh zone. Change in species frequency of the 261 

transplanted treatments between 2014 and 2015 was analysed using linear mixed-effects models 262 

in the lme4 package (Bates et al., 2015) in the R environment (R Core Team 2016). A separate 263 

model was built for each species except for E. atherica as it only occurred in transplanted plots 264 

of the upper saltmarsh in 2015. The difference in percentage species presence between 2014 265 

and 2015 was used as the response variable. Location type (i.e. experimental island or salt marsh 266 

enclosed), elevation and their interaction term were entered into the model as fixed effects. 267 

Intercepts for experimental units were added as random effects to account for a grouped 268 

experimental design. Inspection of residuals indicated heteroscedasticity in location type or 269 

elevation for some species. In those cases, dummy variables were used to assign the variability 270 

to the random effects in the different location types or in different elevation levels. Finally, the 271 

Akaike Information Criterion (AIC) was used to select the best model. Marginal and conditional 272 

R2 following Johnson (2014) were calculated to estimate the model fit. Marginal R2 for mixed-273 

effect models measures the variance explained by fixed effects, conditional R2 additionally 274 

includes the variance explained by fixed and random effects. Least square means and contrast 275 

between location type and elevation were calculated with lsmeans function in the lsmeans 276 

package (Searle et al., 1980).  277 

Results 278 

Abiotic monitoring 279 

Flooding duration and frequency decreased with elevation of the different vegetation 280 

zones as calculated for each elevation from the water level sensor (Tab. S1). Overall duration 281 

of inundation was higher in winter (September – March) than in summer (March – September). 282 

During winter high water extremes, the entire island construction including the wave protection 283 
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plates was inundated by up to 1 m above the top whereas during very low high water levels 284 

even the bottom of the island remained dry (Fig. 4).  285 

Maximum wave height exceeded 2 m near the experimental islands in January 2015 286 

during the storms ‘Elon and Felix’ (Fig. S2a). Maximum wave height during regular winter 287 

storms exceeded 1 m. The sediment within the bare islands was eroded to around 20 cm below 288 

the edge of the cages (i.e. 10 cm below the desired elevation) with the upper salt marsh levels 289 

being affected the most (Fig. S2b). The storms Elon/Felix in January 2015 led to scouring down 290 

to the level of the PE bags in all bare islands. The bare island plots were then manually re-filled 291 

with tidal flat sediments in January 2015 and the sediment level remained stable during the 292 

summer. Variations in surface elevation in the bare salt marsh plots remained between -1 and 293 

+1 cm during the winter storms (Fig. S2c). 294 

 295 

 296 

Fig. 4. Tidal water levels at Spiekeroog tide gauge during the winter of 2014/2015 in relation 297 

to height of experimental island with base at 80 cm NHN. Mean high water is located at 140 298 

cm NHN and mean low water at -129 cm NHN.  299 

The temperature on the experimental islands generally matched the temperature within 300 

the salt marsh with less than 3 °C difference during extremes (Fig. S3). The temperature fell 301 

below zero only on the experimental islands, which occurred four times in the winter 2014/15 302 

but not within the salt marsh enclosed plots.  303 

 304 
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Change of plant communities 305 

The surveys of the control plots within the salt marsh correspond with the natural 306 

community composition, with Salicornia spp. and Spartina anglica dominating the pioneer 307 

zone, Atriplex portulacoides, Limonium vulgare and Puccinellia maritima dominating the 308 

lower salt marsh zone and a monospecific stand of Elytrigia atherica in the upper salt marsh 309 

zone (Fig. S4). The annual species Suaeda maritima occurred both in the pioneer zone and the 310 

lower salt marsh zone, although it was more frequent in the latter. Abundance of the annual 311 

species S. maritima increased in the lower salt marsh zone whereas abundance of Salicornia 312 

spp. increased in the pioneer zone between 2014 and 2015 (Fig. S4, Tab. S5). 313 

After one year of development on the initially bare islands, the pioneer zone level was 314 

colonised by Salicornia spp., S. maritima and P. maritima, however not exceeding 0.2% 315 

presence per species (Fig. 5). The lower salt marsh levels were only colonised by Salicornia 316 

and S. maritima not exceeding 0.6% presence per species, whereas the upper salt marsh levels 317 

remained bare. The initially bare salt marsh enclosed plots in the pioneer zone only lacked A. 318 

portulacoides and L. vulgare compared to the reference plots (Fig. 5). In the lower salt marsh 319 

zone, only A. portulacoides was missing (Fig. 5). The upper salt marsh plots were colonised by 320 

all selected species, except S. anglica. Perennials did not exceed 6% presence in any zone (Fig. 321 

5).  Salicornia spp. had colonised all levels of the bare salt marsh enclosed plots with highest 322 

densities in the lower salt marsh zone.  323 
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 324 

Fig. 5. Species presence in 2015 in reference plots (A) initially bare salt marsh enclosed 325 

plots (B) and on bare experimental islands (C). Pio: pioneer zone, Low: lower salt marsh zone, 326 

Upp: upper salt marsh zone. 327 

The survey of the transplanted sods showed that after one year, Salicornia spp. exhibited 328 

a significantly higher increase in presence in the salt marsh enclosed plots when compared to 329 

the experimental island plots for all zones (P < 0.05). S. maritima presence increased on the 330 

islands and within the salt marsh in all zones apart from the salt marsh enclosed pioneer zone 331 

plot (Fig. 6, Table 1). Spartina anglica decreased on the islands, whereas no general trend was 332 

observed on the salt marsh plots. Atriplex portulacoides decreased in the salt marsh pioneer 333 

zone plots where inundation and salinity were higher than in the lower salt marsh zone from 334 

where the sods were taken in 2014 (Fig. 6, Table 1). This process was not significant on the 335 

experimental islands. L. vulgare increased in the lower and upper salt marsh, where the 336 

environmental conditions were less harsh. E. atherica started to colonise the transplanted 337 
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communities in the upper salt marsh zone. This happened only in the salt marsh enclosed plots 338 

whereas the experimental islands were not colonised by E. atherica in the first year.   339 

 340 

Fig. 6. Frequency change for seven selected species between 2014 and 2015 in transplanted 341 

treatments on the experimental islands and salt marsh enclosed plots. 342 
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Table 1. Changes in species presence between 2014 and 2015. Least square means and standard 343 

errors from linear mixed-effect models. Bold values are significant changes based on 95% 344 

confidence intervals. For Puccinellia only elevation and for Spartina only plot type was 345 

considered for fixed effects.  346 

 Salt marsh enclosed plots Experimental islands R2 

marginal 

R2 

conditional  pio low upp pio low upp 

Salicornia 33.6 7.3 52.9 7.3 20.3 7.3 -5.9 6.7 -12.9 6.7 -5.3 6.7 0.66 0.69 

Suaeda -20.7 5.3 59.9 5.3 34.5 5.3 28.7 5.3 29.7 5.3 26.4 5.3 0.78 0.87 

Atriplex -58.8 8.1 2.6 4.6 10.2 5.3 -17.6 8.1 4.2 4.6 -2.8 5.3 0.71 0.85 

Limonium -4.7 2.4 8.6 2.4 13.5 2.4 -0.1 2.4 0.4 2.4 2.4 2.4 0.51 0.51 

Puccinellia -16.4 3.9 1.4 3.9 -4.3 3.9  0.24 0.27 

Spartina   1.7 2.2     -8.7 2.2   0.25 0.27 

 347 

In the 2014 reference plots species richness was highest in the lower salt marsh zone 348 

with a maximum of 10 species, whereas the upper salt marsh had on average less than 2 species 349 

and the pioneer salt marsh less than 6 species (Fig. S6). On the initially bare plots highest 350 

species richness was observed in the upper salt marsh zone compared to the lower elevations 351 

(Fig. S6). 352 

The average number of individuals of the most successful coloniser Salicornia spp. 353 

across the six bare salt marsh plots showed a similar temporal pattern throughout the year across 354 

the three salt marsh zones (Fig. 7a-c). Whereas the average number of individuals increased 355 

between April and early July, mortality exceeds new establishment from July towards the end 356 

of August (Fig. 7). However, the end of August survey in the pioneer zone showed a small 357 

increase in the average number of individuals (Fig. 7a). The highest numbers of individuals 358 

were found in the lower salt marsh zone whereas the lowest number was found in the upper salt 359 

marsh zone. Tallest individuals were found in the upper salt marsh with no seedling smaller 360 

than 10 cm in July and August whereas smaller seedlings of up to 10 cm were dominant in July 361 

in the lower salt marsh and pioneer zone with larger individuals of >15 cm only increasing in 362 

number in August.   363 
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 364 

Fig. 7. Height histogram of all Salicornia spp. individuals in the bare salt marsh enclosed plot 365 

No 12 on 13th July and 13th August 2015 (panel on the left). Boxplot of monthly count data of 366 

Salicornia spp. individuals in all bare salt marsh plots (panel on the right). Note that y axis has 367 

been clipped at 200 in A) and B) not showing all extreme values of the boxplot.   368 

 369 

Discussion  370 

After one year the experiment provided valuable insights on what metacommunity 371 

processes have immediate effects on vegetation population. The bare experimental islands were 372 

colonised after one year despite severe erosion during a January storm. Pioneer species with 373 

high fecundity (Salicornia spp. and S. maritima) were the main colonisers of the bare plots, also 374 

at higher elevations where they usually do not occur due to competitive exclusion. Mortality 375 

due to increased inundation stress of transplanted individuals was species specific and it only 376 

occurred for some species in the first year. Future community development may be heavily 377 
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influenced by environmental stochasticity. Overall, the present study demonstrates the 378 

suitability of salt marsh islands as a model system for in situ metacommunity experiments.  379 

The experiment allowed the study of the relationships between niche realisation and 380 

isolation of patches in the assembly of spatially structured communities (i.e. along an 381 

environmental gradient). Our results are in line with the predictions that at the upper zone of 382 

tidal influence, plant niche limits are set by competition rather than stress where few species 383 

dominate the community (Bertness and Ellison, 1987; Crain et al., 2004; Pennings et al., 2005). 384 

We show that at the seaward limit only few species can tolerate high salinities and flooding 385 

even in the absence of competition. This leads to a hump-shaped species richness along an 386 

elevational gradient with a maximum at intermediate elevations as it is evident from the control 387 

plots of our experiment (Fig. 6, S7). On the bare plots however, where competition was absent 388 

in the first year, more species colonised the bare upper salt marsh enclosed plots than the lower 389 

elevation plots (Fig. S7). Salicornia spp., a typical pioneer species which is usually 390 

outcompeted at higher elevations, was the most successful coloniser of the bare upper salt marsh 391 

plots. L. vulgare, A. portulacoides and E. atherica were still absent from the bare pioneer plots, 392 

a clear indication of species sorting due to environmental stress (Fig. 5). Within a 393 

metacommunity it is expected that species richness and density increase with increasing habitat 394 

connectivity until a superior competitor eventually enters the community and displaces less 395 

competitive species (Horn and MacArthur, 1972; Tilman, 1994). The time scales of such 396 

competitive displacement with respect to distance from source populations are poorly studied 397 

but likely to take several years for E. atherica in salt marshes  (Rozema et al., 2000; Bakker et 398 

al., 2005). In our experiment E. atherica was still absent from the experimental islands after 399 

one year but colonised the salt marsh enclosed plots of the upper salt marsh although at low 400 

frequencies. The competitive effect of E. atherica is mainly due to its dense, persistent litter 401 

layer with a high tissue C:N ratio (Grace and Pugesek, 1997; Minden and Kleyer, 2011). 402 

Competitive displacement of other species has not been observed but will be monitored 403 

throughout the coming years to quantify the time span and trajectory of community assembly 404 

in initially bare plots both isolated and non-isolated. 405 

With accelerated sea-level rise, salt marsh communities may drown if sediment 406 

accretion cannot keep up with rising sea levels (Kirwan et al., 2016). This can lead to a 407 

displacement of species along the elevational gradient. The species of the drowning marsh may 408 

thus create priority effects which may alter establishment conditions for the displaced species 409 

(Körner et al., 2008; Louette et al., 2008). This has not been studied in a metacommunity context 410 
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before but is highly relevant in times of accelerated sea level rise. Transplanted sods of lower 411 

salt marsh vegetation into the pioneer zone already showed that Atriplex portulacoides and 412 

Puccinellia maritima rapidly died due to increased flooding (Fig. 6). This effect however was 413 

less dominant on the islands. This result may be attributed to artificially kept, constant ground 414 

water levels and hence rapid drainage of the upper sediment layers on the islands after flooding 415 

on the islands. Priority effects such as the delayed colonisation by Elytrigia atherica of the 416 

transplanted plots compared to the bare plots in the upper salt marsh or Spartina anglica in the 417 

pioneer zone were not detected. Both species only reached very low presence in both treatments. 418 

Our results therefore confirm that local extinctions due to competition or fragmentation can 419 

take considerably more time than those due to stress (Cousins, 2006; Helm et al., 2005; 420 

Lindborg and Eriksson, 2004).  421 

The bare salt marsh plots filled with tidal flat sediment allowed high frequency 422 

observations of population dynamics along an environmental gradient. Colonisation by 423 

Salicornia spp. showed similar temporal pattern of seedling emergence and mortality across 424 

elevational zones as observed in a natural saltmarsh by Jefferies et al., (1981). The overall 425 

smaller number of individuals in the upper salt marsh may primarily be attributed to reduced 426 

inundation events and hence overall reduced seed deposition in the first year compared to lower 427 

elevations (Wolters et al., 2004) and to the lack of short-distance seed supply due to absence of 428 

Salicornia spp. in the upper salt marsh community (Rand, 2000). Limited water storage capacity 429 

of the sandy tidal flat sediments in the bare upper salt marsh and island plots may also have 430 

created unsuitable soil moisture and salinity conditions during periods of germination. Growth 431 

conditions for established plants however seemed more suitable in the upper salt marsh (i.e. 432 

larger size of individuals). These observations highlight the relatively small-scale differences 433 

in population dynamics of Salicornia spp.. The relative importance of seed deposition versus 434 

seedling emergence and mortality requires further investigation for all Salicornia species and 435 

subspecies to fully explain the effects of the environmental gradient.  436 

Overall the monitoring data suggests that the experimental islands are not only more 437 

isolated from the source population but also more exposed to wave attack and temperature 438 

minima during winter. This has to be considered for future analyses of the community 439 

development and will be met with frequent monitoring of abiotic parameters. The sediment 440 

within the bare islands was eroded by wave scouring down to the artificial groundwater level 441 

of all six bare islands during a major storm event with 2 m wave height around the islands 442 

(Elon/Felix winter storm in January 2015). We addressed this by installing polycarbonate 443 

covers directly on top of each 1 x 1 m cage during the following stormy season between October 444 
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and March (Fig. S7). The perforated covers allow gas, water and seed exchange and 445 

successfully reduced scouring during the storm season of 2015/16. Although physical 446 

disturbance is part of the dynamics of salt marsh habitats, we acknowledge that this severe 447 

erosion may have led to limited colonisation success of the bare islands in the first year as 448 

potentially deposited seeds during the autumn may have been eroded during the January storm. 449 

The experiment demonstrated however that unassisted dispersal to the islands was generally 450 

possible after one season with a clear selection for early successional species such as Salicornia 451 

spp. and S. maritima. Species-specific differences of early colonisation success is an important 452 

criterion for the patch dynamics paradigm in metacommunity ecology (Kneitel and Chase, 453 

2004; Winegardner et al., 2012).  454 

 455 

Conclusion 456 

The first year of this longer-term experiment supports existing theory. Species sorting 457 

was evident as transplanted vegetation developed differently in the three elevational salt marsh 458 

zones.  As expected, early colonising species such as Salicornia spp. dominated the initially 459 

bare salt marsh enclosed plots across elevations but species number was highest in the least 460 

often inundated upper salt marsh plots in the absence of competition. Limited colonisation of 461 

the bare experimental islands may have been attributed to severe sediment erosion in January 462 

but generally showed that unassisted colonisation was possible. Differences in colonisation 463 

success of bare patches by Salicornia spp. were not only observed between island and salt marsh 464 

plots but also between elevational zones within the marsh. The relevance of mass effects 465 

(Leibold et al., 2004; Turnbull et al., 2004) (i.e. effect of immigration from larger source 466 

populations) may only be observed over longer timescales with increasing competitive 467 

exclusion by new arrivals on the plots. Comparing the future assemblies on the transplanted 468 

plots with the bare plots will allow to address potential priority effects (i.e. effects of existing 469 

species on new arrivals) and the time scales of local extinctions due to stress versus competition. 470 

The exposure to environmental variability and disturbance (such as frost, drought or storm 471 

events) is an integral part of this in situ experimental design. However, stochastic disturbance 472 

in coastal ecosystems may make vegetation development less predictable when compared to 473 

laboratory experiments (Balke et al., 2014). Hence long-term observations will be necessary to 474 

account for environmental variability and stochasticity. 475 

 476 
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