406 research outputs found
Sensitivity and performance of the Advanced LIGO detectors in the third observing run
On April 1st, 2019, the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO), joined by the Advanced Virgo detector, began the third observing run, a year-long dedicated search for gravitational radiation. The LIGO detectors have achieved a higher duty cycle and greater sensitivity to gravitational waves than ever before, with LIGO Hanford achieving angle-averaged sensitivity to binary neutron star coalescences to a distance of 111 Mpc, and LIGO Livingston to 134 Mpc with duty factors of 74.6% and 77.0% respectively. The improvement in sensitivity and stability is a result of several upgrades to the detectors, including doubled intracavity power, the addition of an in-vacuum optical parametric oscillator for squeezed-light injection, replacement of core optics and end reaction masses, and installation of acoustic mode dampers. This paper explores the purposes behind these upgrades, and explains to the best of our knowledge the noise currently limiting the sensitivity of each detector
Point absorbers in Advanced LIGO
Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry–Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises
Approaching the motional ground state of a 10 kg object
The motion of a mechanical object -- even a human-sized object -- should be
governed by the rules of quantum mechanics. Coaxing them into a quantum state
is, however, difficult: the thermal environment masks any quantum signature of
the object's motion. Indeed, the thermal environment also masks effects of
proposed modifications of quantum mechanics at large mass scales. We prepare
the center-of-mass motion of a 10 kg mechanical oscillator in a state with an
average phonon occupation of 10.8. The reduction in temperature, from room
temperature to 77 nK, is commensurate with an 11 orders-of-magnitude
suppression of quantum back-action by feedback -- and a 13 orders-of-magnitude
increase in the mass of an object prepared close to its motional ground state.
This begets the possibility of probing gravity on massive quantum systems.Comment: published version containing minor change
Quantum correlations between the light and kilogram-mass mirrors of LIGO
Measurement of minuscule forces and displacements with ever greater precision
encounters a limit imposed by a pillar of quantum mechanics: the Heisenberg
uncertainty principle. A limit to the precision with which the position of an
object can be measured continuously is known as the standard quantum limit
(SQL). When light is used as the probe, the SQL arises from the balance between
the uncertainties of photon radiation pressure imposed on the object and of the
photon number in the photoelectric detection. The only possibility surpassing
the SQL is via correlations within the position/momentum uncertainty of the
object and the photon number/phase uncertainty of the light it reflects. Here,
we experimentally prove the theoretical prediction that this type of quantum
correlation is naturally produced in the Laser Interferometer
Gravitational-wave Observatory (LIGO). Our measurements show that the quantum
mechanical uncertainties in the phases of the 200 kW laser beams and in the
positions of the 40 kg mirrors of the Advanced LIGO detectors yield a joint
quantum uncertainty a factor of 1.4 (3dB) below the SQL. We anticipate that
quantum correlations will not only improve gravitational wave (GW)
observatories but all types of measurements in future
Quantum correlations between light and the kilogram-mass mirrors of LIGO
The measurement of minuscule forces and displacements with ever greater precision is inhibited by the Heisenberg uncertainty principle, which imposes a limit to the precision with which the position of an object can be measured continuously, known as the standard quantum limit. When light is used as the probe, the standard quantum limit arises from the balance between the uncertainties of the photon radiation pressure applied to the object and of the photon number in the photoelectric detection. The only way to surpass the standard quantum limit is by introducing correlations between the position/momentum uncertainty of the object and the photon number/phase uncertainty of the light that it reflects. Here we confirm experimentally the theoretical prediction that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO). We characterize and compare noise spectra taken without squeezing and with squeezed vacuum states injected at varying quadrature angles. After subtracting classical noise, our measurements show that the quantum mechanical uncertainties in the phases of the 200-kilowatt laser beams and in the positions of the 40-kilogram mirrors of the Advanced LIGO detectors yield a joint quantum uncertainty that is a factor of 1.4 (3 decibels) below the standard quantum limit. We anticipate that the use of quantum correlations will improve not only the observation of gravitational waves, but also more broadly future quantum noise-limited measurements
Sensitivity and Performance of the Advanced LIGO Detectors in the Third Observing Run
On April 1st, 2019, the Advanced Laser Interferometer Gravitational-Wave
Observatory (aLIGO), joined by the Advanced Virgo detector, began the third
observing run, a year-long dedicated search for gravitational radiation. The
LIGO detectors have achieved a higher duty cycle and greater sensitivity to
gravitational waves than ever before, with LIGO Hanford achieving
angle-averaged sensitivity to binary neutron star coalescences to a distance of
111 Mpc, and LIGO Livingston to 134 Mpc with duty factors of 74.6% and 77.0%
respectively. The improvement in sensitivity and stability is a result of
several upgrades to the detectors, including doubled intracavity power, the
addition of an in-vacuum optical parametric oscillator for squeezed-light
injection, replacement of core optics and end reaction masses, and installation
of acoustic mode dampers. This paper explores the purposes behind these
upgrades, and explains to the best of our knowledge the noise currently
limiting the sensitivity of each detector.Comment: 27 pages, 11 figures. v2 edits: minor wording changes, author
additions, and grayscale-friendly figure
Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy
The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1)
Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)
Due to an error at the publisher, in the published article the number of pulsars presented in the paper is incorrect in multiple places throughout the text. Specifically, "222" pulsars should be "221." Additionally, the number of pulsars for which we have EM observations that fully overlap with O1 and O2 changes from "168" to "167." Elsewhere, in the machine-readable table of Table 1 and in Table 2, the row corresponding to pulsar J0952-0607 should be excised as well. Finally, in the caption for Table 2 the number of pulsars changes from "188" to "187.
Searches for gravitational waves from known pulsars at two harmonics in 2015-2017 LIGO data
International audienceWe present a search for gravitational waves from 222 pulsars with rotation frequencies ≳10 Hz. We use advanced LIGO data from its first and second observing runs spanning 2015–2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the l = m = 2 mass quadrupole mode, with a frequency at twice that of the pulsar’s rotation, and the l = 2, m = 1 mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the l = m = 2 mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars’ spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711−6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of 1038 kg m2 for the star’s moment of inertia, and imply a gravitational-wave-derived upper limit on the star’s ellipticity of 1.2 × 10−8. We also place new limits on the emission amplitude at the rotation frequency of the pulsars
- …