801 research outputs found

    The value of subtraction MRI in detection of amyloid-related imaging abnormalities with oedema or effusion in Alzheimer's patients: An interobserver study

    Get PDF
    BACKGROUND: Immunotherapeutic treatments targeting amyloid-Ξ² plaques in Alzheimer's disease (AD) are associated with the presence of amyloid-related imaging abnormalities with oedema or effusion (ARIA-E), whose detection and classification is crucial to evaluate subjects enrolled in clinical trials. PURPOSE: To investigate the applicability of subtraction MRI in the ARIA-E detection using an established ARIA-E-rating scale. METHODS: We included 75 AD patients receiving bapineuzumab treatment, including 29 ARIA-E cases. Five neuroradiologists rated their brain MRI-scans with and without subtraction images. The accuracy of evaluating the presence of ARIA-E, intraclass correlation coefficient (ICC) and specific agreement was calculated. RESULTS: Subtraction resulted in higher sensitivity (0.966) and lower specificity (0.970) than native images (0.959, 0.991, respectively). Individual rater detection was excellent. ICC scores ranged from excellent to good, except for gyral swelling (moderate). Excellent negative and good positive specific agreement among all ARIA-E imaging features was reported in both groups. Combining sulcal hyperintensity and gyral swelling significantly increased positive agreement for subtraction images. CONCLUSION: Subtraction MRI has potential as a visual aid increasing the sensitivity of ARIA-E assessment. However, in order to improve its usefulness isotropic acquisition and enhanced training are required. The ARIA-E rating scale may benefit from combining sulcal hyperintensity and swelling. KEY POINTS: β€’ Subtraction technique can improve detection amyloid-related imaging-abnormalities with edema/effusion in Alzheimer's patients. β€’ The value of ARIA-E detection, classification and monitoring using subtraction was assessed. β€’ Validation of an established ARIA-E rating scale, recommendations for improvement are reported. β€’ Complementary statistical methods were employed to measure accuracy, inter-rater-reliability and specific agreement

    Ultrathin compound semiconductor on insulator layers for high performance nanoscale transistors

    Full text link
    Over the past several years, the inherent scaling limitations of electron devices have fueled the exploration of high carrier mobility semiconductors as a Si replacement to further enhance the device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been actively studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. This integration, however, presents significant challenges. Conventionally, heteroepitaxial growth of complex multilayers on Si has been explored. Besides complexity, high defect densities and junction leakage currents present limitations in the approach. Motivated by this challenge, here we utilize an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on Si/SiO2 substrates. As a parallel to silicon-on-insulator (SOI) technology14,we use the abbreviation "XOI" to represent our compound semiconductor-on-insulator platform. Through experiments and simulation, the electrical properties of InAs XOI transistors are explored, elucidating the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Importantly, a high quality InAs/dielectric interface is obtained by the use of a novel thermally grown interfacial InAsOx layer (~1 nm thick). The fabricated FETs exhibit an impressive peak transconductance of ~1.6 mS/{\mu}m at VDS=0.5V with ON/OFF current ratio of greater than 10,000 and a subthreshold swing of 107-150 mV/decade for a channel length of ~0.5 {\mu}m

    Variability in depression prevalence in early rheumatoid arthritis: a comparison of the CES-D and HAD-D Scales

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Depression is common in rheumatoid arthritis (RA), however reported prevalence varies considerably. Two frequently used instruments to identify depression are the Center for Epidemiological Studies Depression (CES-D) scale, and the Hospital Anxiety and Depression Scale (HADS). The objectives of this study were to test if the CES-D and HADS-D (a) satisfy current modern psychometric standards for unidimensional measurement in an early RA sample; (b) measure the same construct (i.e. depression); and (c) identify similar levels of depression.</p> <p>Methods</p> <p>Data from the two scales completed by patients with early RA were fitted to the Rasch measurement model to show that (a) each scale satisfies the criteria of fit to the model, including strict unidimensionality; (b) that the scales can be co-calibrated onto a single underlying continuum of depression and to (c) examine the location of the cut points on the underlying continuum as indication of the prevalence of depression.</p> <p>Results</p> <p>Ninety-two patients with early RA (62% female; mean age = 56.3, SD = 13.7) gave 141 sets of paired CES-D and HAD-D data. Fit of the data from the CES-D was found to be poor, and the scale had to be reduced to 13 items to satisfy Rasch measurement criteria whereas the HADS-D met model expectations from the outset. The 20 items combined (CES-D13 and HADS-D) satisfied Rasch model expectations. The CES-D gave a much higher prevalence of depression than the HADS-D.</p> <p>Conclusion</p> <p>The CES-D in its present form is unsuitable for use in patients with early RA, and needs to be reduced to a 13-item scale. The HADS-D is valid for early RA and the two scales measure the same underlying construct but their cut points lead to different estimates of the level of depression. Revised cut points on the CES-D13 provide comparative prevalence rates.</p

    The Putative Liquid-Liquid Transition is a Liquid-Solid Transition in Atomistic Models of Water

    Full text link
    We use numerical simulation to examine the possibility of a reversible liquid-liquid transition in supercooled water and related systems. In particular, for two atomistic models of water, we have computed free energies as functions of multiple order parameters, where one is density and another distinguishes crystal from liquid. For a range of temperatures and pressures, separate free energy basins for liquid and crystal are found, conditions of phase coexistence between these phases are demonstrated, and time scales for equilibration are determined. We find that at no range of temperatures and pressures is there more than a single liquid basin, even at conditions where amorphous behavior is unstable with respect to the crystal. We find a similar result for a related model of silicon. This result excludes the possibility of the proposed liquid-liquid critical point for the models we have studied. Further, we argue that behaviors others have attributed to a liquid-liquid transition in water and related systems are in fact reflections of transitions between liquid and crystal

    Search for CP violation in D+→ϕπ+ and D+sβ†’K0SΟ€+ decays

    Get PDF
    A search for CP violation in D + β†’ ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fbβˆ’1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (βˆ’0.04 Β± 0.14 Β± 0.14)% for candidates with K βˆ’ K + mass within 20 MeV/c 2 of the Ο• meson mass. A search for a CP -violating asymmetry that varies across the Ο• mass region of the D + β†’ K βˆ’ K + Ο€ + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+sβ†’K0SΟ€+ decay is measured to be (0.61 Β± 0.83 Β± 0.14)%

    Comparison of intra-articular injections of Hyaluronic Acid and Corticosteroid in the treatment of Osteoarthritis of the hip in comparison with intra-articular injections of Bupivacaine. Design of a prospective, randomized, controlled study with blinding of the patients and outcome assessors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although intra-articular hyaluronic acid is well established as a treatment for osteoarthritis of the knee, its use in hip osteoarthritis is not based on large randomized controlled trials. There is a need for more rigorously designed studies on hip osteoarthritis treatment as this subject is still very much under debate.</p> <p>Methods/Design</p> <p>Randomized, controlled trial with a three-armed, parallel-group design. Approximately 315 patients complying with the inclusion and exclusion criteria will be randomized into one of the following treatment groups: infiltration of the hip joint with hyaluronic acid, with a corticosteroid or with 0.125% bupivacaine.</p> <p>The following outcome measure instruments will be assessed at baseline, i.e. before the intra-articular injection of one of the study products, and then again at six weeks, 3 and 6 months after the initial injection: Pain (100 mm VAS), Harris Hip Score and HOOS, patient assessment of their clinical status (worse, stable or better then at the time of enrollment) and intake of pain rescue medication (number per week). In addition patients will be asked if they have complications/adverse events. The six-month follow-up period for all patients will begin on the date the first injection is administered.</p> <p>Discussion</p> <p>This randomized, controlled, three-arm study will hopefully provide robust information on two of the intra-articular treatments used in hip osteoarthritis, in comparison to bupivacaine.</p> <p>Trial registration</p> <p>NCT01079455</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration
    • …
    corecore