15 research outputs found

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Avaliação do selamento apical dos cimentos endorez e endomethasone.

    No full text
    Avaliação do selamento apical dos cimentos endorez e endomethasone

    Cosmological implications of photon-flux upper limits at ultra-high energies in scenarios of Planckian-interacting massive particles for dark matter

    No full text
    We present a thorough search for signatures that would be suggestive of super-heavy XX particles decaying in the Galactic halo, in the data of the Pierre Auger Observatory. From the lack of signal, we derive upper limits for different energy thresholds above 108{\gtrsim}10^8 GeV on the expected secondary by-product fluxes from XX-particle decay. Assuming that the energy density of these super-heavy particles matches that of dark matter observed today, we translate the upper bounds on the particle fluxes into tight constraints on the couplings governing the decay process as a function of the particle mass. We show that instanton-induced decay processes allow us to derive a bound on the reduced coupling constant of gauge interactions in the dark sector: \alpha_X \alt 0.09, for 10^{9} \alt M_X/\text{GeV} < 10^{19}. This upper limit on αX\alpha_X is complementary to the non-observation of tensor modes in the cosmic microwave background in the context of Planckian-interacting massive particles for dark matter produced during the reheating epoch. Viable regions for this scenario to explain dark matter are delineated in several planes of the multidimensional parameter space that involves, in addition to MXM_X and αX\alpha_X, the Hubble rate at the end of inflation, the reheating efficiency, and the non-minimal coupling of the Higgs with curvature

    Cosmological implications of photon-flux upper limits at ultra-high energies in scenarios of Planckian-interacting massive particles for dark matter

    No full text
    We present a thorough search for signatures that would be suggestive of super-heavy XX particles decaying in the Galactic halo, in the data of the Pierre Auger Observatory. From the lack of signal, we derive upper limits for different energy thresholds above 108{\gtrsim}10^8 GeV on the expected secondary by-product fluxes from XX-particle decay. Assuming that the energy density of these super-heavy particles matches that of dark matter observed today, we translate the upper bounds on the particle fluxes into tight constraints on the couplings governing the decay process as a function of the particle mass. We show that instanton-induced decay processes allow us to derive a bound on the reduced coupling constant of gauge interactions in the dark sector: \alpha_X \alt 0.09, for 10^{9} \alt M_X/\text{GeV} < 10^{19}. This upper limit on αX\alpha_X is complementary to the non-observation of tensor modes in the cosmic microwave background in the context of Planckian-interacting massive particles for dark matter produced during the reheating epoch. Viable regions for this scenario to explain dark matter are delineated in several planes of the multidimensional parameter space that involves, in addition to MXM_X and αX\alpha_X, the Hubble rate at the end of inflation, the reheating efficiency, and the non-minimal coupling of the Higgs with curvature

    Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory

    No full text
    International audienceLorentz invariance violation (LIV) is often described by dispersion relations of the form E i_{i} 2^{2} = m i_{i} 2^{2}+p i_{i} 2^{2}i,n_{i,n} E 2+n^{2+n} with delta different based on particle type i, with energy E, momentum p and rest mass m. Kinematics and energy thresholds of interactions are modified once the LIV terms become comparable to the squared masses of the particles involved. Thus, the strongest constraints on the LIV coefficients δi,n_{i,n} tend to come from the highest energies. At sufficiently high energies, photons produced by cosmic ray interactions as they propagate through the Universe could be subluminal and unattenuated over cosmological distances. Cosmic ray interactions can also be modified and lead to detectable fingerprints in the energy spectrum and mass composition observed on Earth. The data collected at the Pierre Auger Observatory are therefore possibly sensitive to both the electromagnetic and hadronic sectors of LIV. In this article, we explore these two sectors by comparing the energy spectrum and the composition of cosmic rays and the upper limits on the photon flux from the Pierre Auger Observatory with simulations including LIV. Constraints on LIV parameters depend strongly on the mass composition of cosmic rays at the highest energies. For the electromagnetic sector, while no constraints can be obtained in the absence of protons beyond 1019^{19} eV, we obtain δγ,0_{γ,0} > -1021^{-21}, δγ,1_{γ,1} > -1040^{-40} eV1^{-1} and δγ,2_{γ,2} > -1058^{-58} eV2^{-2} in the case of a subdominant proton component up to 1020^{20} eV. For the hadronic sector, we study the best description of the data as a function of LIV coefficients and we derive constraints in the hadronic sector such as δhad,0_{had,0} < 1019^{-19}, δhad,1_{had,1} < 1038^{-38} eV1^{-1} and δhad,2_{had,2} < 1057^{-57} eV2^{-2} at 5σ CL

    A Search for Photons with Energies Above 2 × 1017^{17} eV Using Hybrid Data from the Low-Energy Extensions of the Pierre Auger Observatory

    No full text
    International audienceUltra-high-energy photons with energies exceeding 1017^{17} eV offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 1015^{15} eV range further motivate searches for even higher-energy photons. In this paper, we present a search for photons with energies exceeding 2 × 1017^{17} eV using about 5.5 yr of hybrid data from the low-energy extensions of the Pierre Auger Observatory. The upper limits on the integral photon flux derived here are the most stringent ones to date in the energy region between 1017^{17} and 1018^{18} eV

    Cosmological implications of photon-flux upper limits at ultra-high energies in scenarios of Planckian-interacting massive particles for dark matter

    No full text
    We present a thorough search for signatures that would be suggestive of super-heavy XX particles decaying in the Galactic halo, in the data of the Pierre Auger Observatory. From the lack of signal, we derive upper limits for different energy thresholds above 108{\gtrsim}10^8 GeV on the expected secondary by-product fluxes from XX-particle decay. Assuming that the energy density of these super-heavy particles matches that of dark matter observed today, we translate the upper bounds on the particle fluxes into tight constraints on the couplings governing the decay process as a function of the particle mass. We show that instanton-induced decay processes allow us to derive a bound on the reduced coupling constant of gauge interactions in the dark sector: \alpha_X \alt 0.09, for 10^{9} \alt M_X/\text{GeV} < 10^{19}. This upper limit on αX\alpha_X is complementary to the non-observation of tensor modes in the cosmic microwave background in the context of Planckian-interacting massive particles for dark matter produced during the reheating epoch. Viable regions for this scenario to explain dark matter are delineated in several planes of the multidimensional parameter space that involves, in addition to MXM_X and αX\alpha_X, the Hubble rate at the end of inflation, the reheating efficiency, and the non-minimal coupling of the Higgs with curvature
    corecore