207 research outputs found
Single or joint amplitude distribution analyzer Patent
Cathode ray oscilloscope for analyzing electrical waveforms representing amplitude distribution of time functio
Identification of androgen receptor phosphorylation in the primate ovary in vivo
The androgen receptor (AR) is a member of the nuclear receptor superfamily, and is important for both male and female reproductive health. The receptor is a target for a number of post-translational modifications including phosphorylation, which has been intensively studied in vitro. However, little is known about the phosphorylation status of the receptor in target tissues in vivo. The common marmoset is a useful model for studying human reproductive functions, and comparison of the AR primary sequence from this primate shows high conservation of serines known to be phosphorylated in the human receptor and corresponding flanking amino acids. We have used a panel of phosphospecific antibodies to study AR phosphorylation in the marmoset ovary throughout the follicular phase and after treatment with GNRH antagonist or testosterone propionate. In normal follicular phase ovaries, total AR (both phosphorylated and non-phosphorylated forms) immunopositive staining was observed in several cell types including granulosa cells of developing follicles, theca cells and endothelial cells lining blood vessels. Receptor phosphorylation at serines 81, 308, and 650 was detected primarily in the granulosa cells of developing follicles, surface epithelium, and vessel endothelial cells. Testosterone treatment lead to a modest increase in AR staining in all stages of follicle studied, while GNRH antagonist had no effect. Neither treatment significantly altered the pattern of phosphorylation compared to the control group. These results demonstrate that phosphorylation of the AR occurs, at a subset of serine residues, in a reproductive target tissue in vivo, which appears refractory to hormonal manipulations
Host Factors interacting with the Pestivirus N terminal protease, Npro are Components of the Ribonucleoprotein Complex
The viral N-terminal protease N(pro) of pestiviruses counteracts cellular antiviral defenses through inhibition of IRF3. Here we used mass spectrometry to identify a new role for N(pro) through its interaction with over 55 associated proteins, mainly ribosomal proteins and ribonucleoproteins, including RNA helicase A (DHX9), Y-box binding protein (YBX1), DDX3, DDX5, eIF3, IGF2BP1, multiple myeloma tumor protein 2, interleukin enhancer binding factor 3 (IEBP3), guanine nucleotide binding protein 3, and polyadenylate-binding protein 1 (PABP-1). These are components of the translation machinery, ribonucleoprotein particles (RNPs), and stress granules. Significantly, we found that stress granule formation was inhibited in MDBK cells infected with a noncytopathic bovine viral diarrhea virus (BVDV) strain, Kyle. However, ribonucleoproteins binding to N(pro) did not inhibit these proteins from aggregating into stress granules. N(pro) interacted with YBX1 though its TRASH domain, since the mutant C112R protein with an inactive TRASH domain no longer redistributed to stress granules. Interestingly, RNA helicase A and La autoantigen relocated from a nuclear location to form cytoplasmic granules with N(pro). To address a proviral role for N(pro) in RNP granules, we investigated whether N(pro) affected RNA interference (RNAi), since interacting proteins are involved in RISC function during RNA silencing. Using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) silencing with small interfering RNAs (siRNAs) followed by Northern blotting of GAPDH, expression of N(pro) had no effect on RNAi silencing activity, contrasting with other viral suppressors of interferon. We propose that N(pro) is involved with virus RNA translation in the cytoplasm for virus particle production, and when translation is inhibited following stress, it redistributes to the replication complex. IMPORTANCE Although the pestivirus N-terminal protease, N(pro), has been shown to have an important role in degrading IRF3 to prevent apoptosis and interferon production during infection, the function of this unique viral protease in the pestivirus life cycle remains to be elucidated. We used proteomic mass spectrometry to identify novel interacting proteins and have shown that N(pro) is present in ribosomal and ribonucleoprotein particles (RNPs), indicating a translational role in virus particle production. The virus itself can prevent stress granule assembly from these complexes, but this inhibition is not due to N(pro). A proviral role to subvert RNA silencing through binding of these host RNP proteins was not identified for this viral suppressor of interferon
Role of the carboxyl terminal di-leucine in phosphorylation and internalization of C5a receptor
AbstractThe carboxyl tail of G protein-coupled receptors contains motifs that regulate receptor interactions with intracellular partners. Activation of the human neutrophil complement fragment C5a receptor (C5aR) is terminated by phosphorylation of the carboxyl tail followed by receptor internalization. In this study, we demonstrated that bulky hydrophobic residues in the membrane-proximal region of the C5aR carboxyl tail play an important role in proper structure and function of the receptor: Substitution of leucine 319 with alanine (L319A) resulted in receptor retention in the endoplasmic reticulum, whereas a L318A substitution allowed receptor transport to the cell surface, but showed slow internalization upon activation, presumably due to a defect in phosphorylation by both PKC and GRK. Normal agonist-induced activation of ERK1/2 and intracellular calcium release suggested that the L318A mutation did not affect receptor signaling. Binding of GRK2 and PKCβII to intracellular loop 3 of C5aR in vitro indicated that mutagenesis of L318 did not affect kinase binding. Limited proteolysis with trypsin revealed a conformational difference between wild type and mutant receptor. Our studies support a model in which the L318/L319 stabilizes an amphipathic helix (Q305–R320) in the membrane-proximal region of C5aR
Modelling and prevention of acute kidney injury through ischemia and reperfusion in a combined human renal proximal Tubule/Blood Vessel-on-a-Chip
Analytical BioScience
Cyclooxygenase inhibitors impair CD4 T cell immunity and exacerbate Mycobacterium tuberculosis infection in aerosol-challenged mice
Tuberculosis, caused by infection with Mycobacterium tuberculosis (Mtb), kills over 1.6 million people each year despite availability of antibiotics. The increase in drug resistant Mtb strains is a major public health emergency and host-directed therapy as adjunct to antibiotic treatment has gained increased interest. Cyclooxygenase inhibitors (COXi) are frequently used drugs to alleviate tuberculosis related symptoms. Mouse studies of acute intravenous Mtb infection have suggested a potential benefit of COXi for host-directed therapy. Here we show that COXi treatment (ibuprofen and celecoxib) is detrimental to Mtb control in different mouse models of respiratory infection. This effect links to impairments of the Type-1 helper (Th1) T-cell response as CD4 T-cells in COXi-treated animals have significantly decreased Th1 differentiation, reduced IFNγ expression and decreased protective capacity upon adoptive transfer. If confirmed in clinical trials, these findings could have major impact on global health and question the use of COXi for host-directed therapy.publishedVersio
Mycorrhizal generalist with wood-decay fungi
The climbing orchid Erythrorchis altissima is the largest mycoheterotroph in the world. Although previous in vitro work suggests that E. altissima has a unique symbiosis with wood-decaying fungi, little is known about how this giant orchid meets its carbon and nutrient demands exclusively via mycorrhizal fungi. In this study, the mycorrhizal fungi of E. altissima were molecularly identified using root samples from 26 individuals. Furthermore, in vitro symbiotic germination with five fungi and stable isotope compositions in five E. altissima at one site were examined. In total, 37 fungal operational taxonomic units (OTUs) belonging to nine orders in Basidiomycota were identified from the orchid roots. Most of the fungal OTUs were wood-decaying fungi, but underground roots had ectomycorrhizal Russula. Two fungal isolates from mycorrhizal roots induced seed germination and subsequent seedling development in vitro. Measurement of carbon and nitrogen stable isotope abundances revealed that E. altissima is a full mycoheterotroph whose carbon originates mainly from wood-decaying fungi. All of the results show that E. altissima is associated with a wide range of wood- and soil-inhabiting fungi, the majority of which are wood-decaying taxa. This generalist association enables E. altissima to access a large carbon pool in woody debris and has been key to the evolution of such a large mycoheterotroph
Establishment of Motor Neuron-V3 Interneuron Progenitor Domain Boundary in Ventral Spinal Cord Requires Groucho-Mediated Transcriptional Corepression
Background: Dorsoventral patterning of the developing spinal cord is important for the correct generation of spinal neuronal types. This process relies in part on cross-repressive interactions between specific transcription factors whose expression is regulated by Sonic hedgehog. Groucho/transducin-like Enhancer of split (TLE) proteins are transcriptional corepressors suggested to be recruited by at least certain Sonic hedgehog-controlled transcription factors to mediate the formation of spatially distinct progenitor domains within the ventral spinal cord. The aim of this study was to characterize the involvement of TLE in mechanisms regulating the establishment of the boundary between the most ventral spinal cord progenitor domains, termed pMN and p3. Because the pMN domain gives rise to somatic motor neurons while the p3 domain generates V3 interneurons, we also examined the involvement of TLE in the acquisition of these neuronal fates. Methodology and Principal Findings: A combination of in vivo loss- and gain-of-function studies in the developing chick spinal cord was performed to characterize the role of TLE in ventral progenitor domain formation. It is shown here that TLE overexpression causes increased numbers of p3 progenitors and promotes the V3 interneuron fate while suppressing the motor neuron fate. Conversely, dominant-inhibition of TLE increases the numbers of pMN progenitors and postmitotic motor neurons. Conclusion: Based on these results, we propose that TLE is important to promote the formation of the p3 domain an
Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression
<p>Abstract</p> <p>Background</p> <p><it>Drosophila </it>Groucho and its human Transducin-like-Enhancer of Split orthologs (TLEs) function as transcription co-repressors within the context of Wnt signaling, a pathway with strong links to cancer. The current model for how Groucho/TLE's modify Wnt signaling is by direct competition with β-catenin for LEF/TCF binding. The molecular events involved in this competitive interaction are not defined and the actions of Groucho/TLEs within the context of Wnt-linked cancer are unknown.</p> <p>Methods</p> <p>We used <it>in vitro </it>protein interaction assays with the LEF/TCF family member LEF-1, and <it>in vivo </it>assays with Wnt reporter plasmids to define Groucho/TLE interaction and repressor function.</p> <p>Results</p> <p>Mapping studies reveal that Groucho/TLE binds two regions in LEF-1. The primary site of recognition is a 20 amino acid region in the Context Dependent Regulatory domain. An auxiliary site is in the High Mobility Group DNA binding domain. Mutation of an eight amino acid sequence within the primary region (RFSHHMIP) results in a loss of Groucho action in a transient reporter assay. <it>Drosophila </it>Groucho, human TLE-1, and a truncated human TLE isoform Amino-enhancer-of-split (AES), work equivalently to repress LEF-1•β-catenin transcription in transient reporter assays, and these actions are sensitive to the HDAC inhibitor Trichostatin A. A survey of Groucho/TLE action in a panel of six colon cancer cell lines with elevated β-catenin shows that Groucho is not able to repress transcription in a subset of these cell lines.</p> <p>Conclusion</p> <p>Our data shows that Groucho/TLE repression requires two sites of interaction in LEF-1 and that a central, conserved amino acid sequence within the primary region (F S/T/P/xx y I/L/V) is critical. Our data also reveals that AES opposes LEF-1 transcription activation and that both Groucho and AES repression require histone deacetylase activity suggesting multiple steps in Groucho competition with β-catenin. The variable ability of Groucho/TLE to oppose Wnt signaling in colon cancer cells suggests there may be defects in one or more of these steps.</p
Inhibin removes the inhibitory effects of activin on steroid enzyme expression and androgen production by normal ovarian thecal cells
Activin and inhibin are important local modulators of theca cell steroidogenesis in the ovary. Using a serum-free primary theca cell culture system, this study investigated the effects of inhibin on theca cell androgen production and expression of steroidogenic enzymes. Androstenedione secretion from theca cells cultured in media containing activin, inhibin and follistatin was assessed by RIA over 144 h. Activin (1–100 ng/ml) suppressed androstenedione production. Inhibin (1–100 ng/ml) blocked the suppressive effects of added activin, but increased androstenedione production when added alone, suggesting it was blocking endogenous activin produced by theca cells. Addition of SB-431542 (activin receptor inhibitor) and follistatin (500 ng/ml) increased androstenedione production, supporting this concept. Infection of theca cells with adenoviruses expressing inhibitory Smad6 or 7 increased androstenedione secretion, confirming that the suppressive effects of activin required activation of the Smad2/3 pathway. Activin decreased the expression levels of steroidogenic acute regulatory protein (STAR), whereas STAR expression was increased by inhibin and SB-431542, alone and in combination. CYP11A was unaffected. The expression of CYP17 encoding 17α-hydroxylase was unaffected by activin but increased by inhibin and SB-431542, and when added in combination the effect was further enhanced. The expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) was significantly decreased by activin, while inhibin alone and in combination with SB-431542 both potently increased the expression of 3β-HSD. In conclusion, activin suppressed theca cell androstenedione production by decreasing the expression of STAR and 3β-HSD. Inhibin and other blockers of activin action reversed this effect, supporting the concept that endogenous thecal activin modulates androgen production in theca cells
- …