View metadata	, citation	and	similar	papers	at	core.ac.uk
---------------	------------	-----	---------	--------	----	------------

brought to you by

provided by Tokushima University Institutional Repository. This is the peer reviewed version of the following article: Ogura-Tsujita Y, Gebauer G, Xu H, et al. The giant mycoheterotrophic orchid Erythrorchis altissima is associated mainly with a divergent set of wood-decaying fungi. Mol Ecol. 2018;27:1324–1337. which has been published in final form at https://doi.org/10.1111/mec.14524. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

1	The giant mycoheterotrophic orchid <i>Erythrorchis altissima</i> is associated mainly with a
2	divergent set of wood-decaying fungi
3	
4	Yuki Ogura-Tsujita ¹ , Gerhard Gebauer ² , Hui Xu ³ , Yu Fukasawa ⁴ , Hidetaka Umata ⁵ , Kenshi
5	Tetsuka ⁶ , Miho Kubota ¹ , Julienne M-I Schweiger ² , Satoshi Yamashita ⁷ , Nitaro Maekawa ⁸ ,
6	Masayuki Maki ³ , Shiro Isshiki ¹ , Tomohisa Yukawa ⁹
7	
8	Running title: Mycorrhizal generalist with wood-decay fungi
9	
10	Affiliation
11	¹ Faculty of Agriculture, Saga University, Honjo-machi 1, Saga 840-8502, Japan; ² Bayreuth
12	Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440
13	Bayreuth, Germany; ³ Botanical Gardens, Tohoku University, 12-2 Kawauchi, Aoba-ku,
14	Sendai 980-0862, Japan; ⁴ Graduate School of Agricultural Science, Tohoku University,
15	Naruko-onsen, Osaki, Miyagi 989-6711, Japan; ⁵ Faculty of Agriculture, Kagoshima
16	University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan; ⁶ Yaku-shima Yakutane-goyo
17	Research Group, Isso, Yakushima-machi, Kumage-gun, Kagoshima 891-4203, Japan;
18	⁷ Graduate School of Technology, Industrial and Social Sciences, Tokushima University,
19	Minami-Josanjima, Tokushima 770-8513, Japan; ⁸ Faculty of Agriculture, Tottori University,
20	4-101 Koyamaminami, Tottori 680-8553, Japan; ⁹ Tsukuba Botanical Garden, National
21	Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan
22	
23	Correspondence
24	Yuki Ogura-Tsujita, Faculty of Agriculture, Saga University, Honjo-machi 1, Saga 840-8502,
25	Japan.
26	E-mail: ytsujita@cc.saga-u.ac.jp
27	
28	Present address
29	Hui Xu, The Institute of Biochemistry, Food Science, and Nutrition, Robert H. Smith Faculty
30	of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100,
31	Israel
32	Yu Fukasawa, Cardiff School of Biosciences, Biomedical Building, Museum Avenue, Cardiff
33	CF10 3AX, UK

34 35	Hidetaka Umata, 5211 Kita-Takanabe, Takanabe-cho, Koyu-gun, Miyazaki 884-0002, Japan
36	Abstract
37	The climbing orchid <i>Erythrorchis altissima</i> is the largest mycoheterotroph in the world.
38	Although previous in vitro work suggests that E. altissima has a unique symbiosis with
39	wood-decaying fungi, little is known about how this giant orchid meets its carbon and nutrient
40	demands exclusively via mycorrhizal fungi. In this study, the mycorrhizal fungi of E.
41	altissima were molecularly identified using root samples from 26 individuals. Furthermore, in
42	<i>vitro</i> symbiotic germination with five fungi and stable isotope compositions in five <i>E</i> .
43	altissima at one site were examined. In total, 37 fungal operational taxonomic units (OTUs)
44	belonging to nine orders in Basidiomycota were identified from the orchid roots. Most of the
45	fungal OTUs were wood-decaying fungi, but underground roots had ectomycorrhizal Russula.
46	Two fungal isolates from mycorrhizal roots induced seed germination and subsequent
47	seedling development in vitro. Measurement of carbon and nitrogen stable isotope
48	abundances revealed that E. altissima is a full mycoheterotroph whose carbon originates
49	mainly from wood-decaying fungi. All of the results show that E. altissima is associated with
50	a wide range of wood- and soil-inhabiting fungi, the majority of which are wood-decaying
51	taxa. This generalist association enables <i>E. altissima</i> to access a large carbon pool in woody
52	debris and has been key to the evolution of such a large mycoheterotroph.
53	Keywords
54	mycoheterotrophy, mycorrhiza, orchid, stable isotope, symbiotic germination, wood-decaying
55	fungi
56	

57 Introduction

58

59	Mycorrhizas are an ancient, widespread association between fungi and land plants. They are
60	based on a mutualistic symbiosis in which the fungus provides water and nutrients to the plant
61	in return for fixed carbon from the plant (Smith & Read, 2008). Although these mutualistic
62	associations are widespread among the majority of photosynthetic plants, mycoheterotrophic
63	(MH) plants, which have evolved independently in 17 plant families (Merckx et al., 2013),
64	have completely lost their photosynthetic ability and obtain all of their carbon through
65	mycorrhizal associations (Leake, 1994). In most cases, MH plants rely on the two dominant
66	mycorrhizal symbioses, the arbuscular mycorrhizal association and ectomycorrhizal (ECM)
67	association, which allow MH plants to obtain carbon from surrounding autotrophic plants via
68	shared mycorrhizal mycelia (Merckx, 2013). Whereas such tripartite systems provide access
69	to the common mycorrhizal network of arbuscular mycorrhizal and ECM fungi linking the
70	autotrophic plants (Bidartondo, 2005), associations with free-living litter- or wood-decaying
71	(WD) fungi have been shown in several MH orchids. Early studies based on the isolation
72	technique found this association in several MH orchids, such as Gastrodia elata (Kusano,
73	1911) and Cyrtosia septentrionalis (as Galeola septentrionalis) (Hamada, 1939) associating
74	with the plant pathogenic WD fungus Armillaria, Gastrodia javanica associating with the
75	WD polypore Xerotus javanicus, and Didymoplexis minor associating with the litter-decaying
76	fungus Marasmius coniatus (Burgeff, 1932). Recent molecular work has also confirmed the
77	association of tropical or warm-temperate MH orchids with WD fungal linages, such as
78	Epipogium roseum with Psathyrellaceae (Yamato et al., 2005), Eulophia zollingeri with
79	Psathyrella candolleana (Ogura-Tsujita & Yukawa, 2008), Gastrodia similis with Resinicium

80	(Martos et al., 2009), and Cyrtosia and Galeola species with Meripilaceae (Umata et al.,
81	2013; Lee et al., 2015). Furthermore, litter-decaying Mycenaceae and Marasmiaceae have
82	been found to associate with MH orchids, such as Wullschlaegelia aphylla (Martos et al.,
83	2009) and Gastrodia species (Ogura-Tsujita et al., 2009; Lee et al., 2015; Kinoshita et al.,
84	2016; see Selosse et al., 2010 for more detail). Decomposition of woody debris and leaf litter
85	by saprotrophic fungi plays a key role in regulating the carbon (C) and nutrient cycles of all
86	terrestrial ecosystems (Berg & McClaugherty, 2003). Woody debris is a major component of
87	forest biomass, and this large C store represents up to 20% of the total aboveground biomass
88	(Laiho & Prescott, 1999; Bradford et al., 2009). MH plants that are associated with
89	saprotrophic fungi likely depend on the forest C cycle from plant debris, but understanding of
90	mycorrhizal associations with litter- or wood-decaying fungi is still limited.
91	The giant mycoheterotroph Erythrorchis altissima (Blume) Blume (as Galeola
92	altissima and Erythrorchis ochobiensis) is expected to have a unique symbiosis with WD
93	fungi, which could act as a new model for understanding mycorrhizal diversity and specificity
94	in MH plants. This species is the largest mycoheterotroph. It is a climbing, perennial
95	hemi-epiphytic orchid species without foliage leaves, with both an aerial and subterranean
96	root system, and with a distribution ranging from warm-temperate to tropical regions in East
97	to South East Asia (Comber, 1990; Figure 1). Its stems climb over dead wood or living trees,
98	and often reach a length of 10 m (Averyanov, 2011). Despite such remarkable characteristics
99	of E. altissima, the fundamental basis of how it meets its C and nutrient demands exclusively
100	via mycorrhizal fungi is unknown. Early research by Hamada and Nakamura (1963) and
101	previous in vitro studies (Umata, 1995, 1997a, b, 1998a, b, 1999; Umata et al., 2000; see

102	more details in Table S1) have shown that 19 basidiomycete species, most of them WD fungi
103	that were never previously shown to be mycorrhizal fungi, had mycorrhizal association with E.
104	altissima. These studies indicate that E. altissima is a mycorrhizal generalist, targeting a wide
105	phylogenetic range of WD basidiomycetes, which has not been demonstrated for any other
106	plant.
107	An association with ECM fungi has also been suggested, as shown by successful
108	germination with the ECM fungus Lyophyllum shimeji (Umata, 1997b). In fact, both
109	saprotrophic Gymnopus and the ECM fungus Russula have been identified from underground
110	roots in <i>Erythrorchis cassythoides</i> (Dearnaley, 2006), which is the sister species of <i>E</i> .
111	altissima and is also a climbing mycoheterotrophic orchid in Australia (Jones, 2006). Based
112	on these studies, E. altissima is assumed to lack fungal specificity, targeting a range of
113	wood-inhabiting fungi in addition to ECM fungal associations, which indicates a mixed C
114	gain from WD and ECM fungi. Stable isotope natural abundance can be used to assess a
115	plant's nutritional mode and is particularly useful in MH plants that fully depend on
116	fungal-derived C and nitrogen (N) as they are heavily enriched in 13 C and 15 N (Gebauer &
117	Meyer, 2003). This approach has been applied to a number of MH species associated with
118	ECM fungi (Bidartondo et al., 2004; Abadie et al., 2006; Liebel et al., 2010), arbuscular
119	mycorrhizal fungi (Merckx et al., 2010; Bolin et al., 2015) and also saprotrophic fungi
120	(Martos et al., 2009; Ogura-Tsujita et al., 2009; Lee et al., 2015). The difference in isotopic
121	signatures between WD and ECM fungi can distinguish which fungal group covers the

122 majority of the C and N demand of *E. altissima* (Kohzu et al., 1999; Hobbie et al., 2012).

123	This study is the first to investigate the mycoheterotrophy of E. altissima
124	comprehensively by combining molecular, <i>in vitro</i> culture and mass-spectrometric approaches.
125	To reveal its mycorrhizal fungal diversity and specificity, we first analyzed 26 individuals
126	from six sites using molecular identification. Second, to confirm the mycorrhizal potential of
127	identified fungi, we isolated five mycorrhizal fungal strains from root tissues and used them
128	for co-culture with seeds in conjunction with a decay test to compare the wood-decay ability
129	of these isolates. Third, natural stable isotope abundances of C and N were analyzed to
130	confirm the mycoheterotrophy and reveal the pathways for nutrient acquisition in <i>E</i> .
131	altissima.
132	
133	Materials and Methods
134	
134 135	Field sites and sample collection
134135136	Field sites and sample collection
 134 135 136 137 	Field sites and sample collection Plant and fungal materials were collected from six sites of warm-temperate (S1–S3) or
 134 135 136 137 138 	Field sites and sample collection Plant and fungal materials were collected from six sites of warm-temperate (S1–S3) or subtropical (S4–S6) regions in Japan from 2013 to 2016 (Table 1, Figure S1). The habitats of
 134 135 136 137 138 139 	Field sites and sample collection Plant and fungal materials were collected from six sites of warm-temperate (S1–S3) or subtropical (S4–S6) regions in Japan from 2013 to 2016 (Table 1, Figure S1). The habitats of <i>E. altissima</i> were shaded to semi-open places in evergreen broadleaf forests dominated by
 134 135 136 137 138 139 140 	Field sites and sample collection Plant and fungal materials were collected from six sites of warm-temperate (S1–S3) or subtropical (S4–S6) regions in Japan from 2013 to 2016 (Table 1, Figure S1). The habitats of <i>E. altissima</i> were shaded to semi-open places in evergreen broadleaf forests dominated by <i>Castanopsis sieboldii.</i> Most of the individuals found in this study were hemi-epiphytes with
 134 135 136 137 138 139 140 141 	Field sites and sample collection Plant and fungal materials were collected from six sites of warm-temperate (S1–S3) or subtropical (S4–S6) regions in Japan from 2013 to 2016 (Table 1, Figure S1). The habitats of <i>E. altissima</i> were shaded to semi-open places in evergreen broadleaf forests dominated by <i>Castanopsis sieboldii</i> . Most of the individuals found in this study were hemi-epiphytes with stems climbing on fallen or standing dead trunks and living trees from underground (Figure
 134 135 136 137 138 139 140 141 142 	Field sites and sample collection Plant and fungal materials were collected from six sites of warm-temperate (S1–S3) or subtropical (S4–S6) regions in Japan from 2013 to 2016 (Table 1, Figure S1). The habitats of <i>E. altissima</i> were shaded to semi-open places in evergreen broadleaf forests dominated by <i>Castanopsis sieboldii</i> . Most of the individuals found in this study were hemi-epiphytes with stems climbing on fallen or standing dead trunks and living trees from underground (Figure 1a, b); however, a few individuals were creeping on the ground without host trees. The
 134 135 136 137 138 139 140 141 142 143 	Field sites and sample collection Plant and fungal materials were collected from six sites of warm-temperate (S1–S3) or subtropical (S4–S6) regions in Japan from 2013 to 2016 (Table 1, Figure S1). The habitats of <i>E. altissima</i> were shaded to semi-open places in evergreen broadleaf forests dominated by <i>Castanopsis sieboldii</i> . Most of the individuals found in this study were hemi-epiphytes with stems climbing on fallen or standing dead trunks and living trees from underground (Figure 1a, b); however, a few individuals were creeping on the ground without host trees. The average length of aboveground stems among 29 individuals was 3.9 m, ranging from 1.5 to

145	Distylium racemosum, Elaeocarpus japonicus, Elaeocarpus zollingeri, Myrsine seguinii,
146	Syzygium buxifolium, and Cinnamomum daphnoides were also found (Tables 2, 3). The level
147	of decay of host trees was surveyed according to Fukasawa et al. (2009) and assigned to five
148	classes: 1) wood, hard; 2) wood, somewhat hard, a knife penetrates less than 1 cm into the
149	wood; 3) wood, distinctly softened, a knife penetrates $\sim 1-4$ cm into the wood, bark partly
150	lost; 4) wood, strongly decayed, a knife penetrates \sim 5–10 cm into the wood, bark lost in most
151	places; and 5) wood, very decayed, a knife penetrates more than 10 cm into the wood, original
152	log circumference not recognizable or hardly recognizable.
153	Root morphology was categorized into two groups: thick and densely branched root
154	clumps (Figure 1c, e) and thin and elongate roots (Figure 1d). Both types appeared in aerial
155	(Figure 1c, d) and underground (Figure 1e) plant stems. Mycorrhizal colonization was
156	confirmed with a light microscope using free-hand sections of all collected roots. Our
157	preliminary observation showed that mycorrhizal fungi mainly colonized densely branched
158	roots (Figure 2) while elongate roots were scarcely colonized. Thus, the former roots were
159	used mainly for the following microscopy observations and molecular identification.
160	As mycorrhizal association with WD fungi has been suggested by previous studies
161	(Hamada & Nakamura, 1963; Umata, 1995, 1997a, b, 1998a, b, 1999; Umata et al., 2000),
162	sporocarps of WD fungi were also collected from host trees of E. altissima and identified at
163	the species level by morphology or molecular identification. Voucher specimens of E.
164	altissima and sporocarps were deposited in the Herbarium of the National Museum of Nature
165	and Science, Tokyo (TNS8501221, 8505147, 8505854-8505857 for E. altissima, and
166	TNS-F-80541, 80542 for Trichaptum cf. durum) and in the Tottori University Mycological

167 Herbarium (TUMH62765 for *Coniophorafomes matsuzawae*).

168

169	Microscopy observation
170	
171	For assessment of mycorrhizal colonization in root tissues, collected mycorrhizal roots were
172	fixed in 50% ethanol/formaldehyde/acetic acid, 90:5:5 for microscopy observation. Root
173	pieces were dehydrated in a graded ethanol series, embedded in paraffin, cut transversely into
174	10-µm-thick sections, and stained with safranin-O/fast green. The sections were dehydrated
175	through an alcohol-xylene series, mounted with Bioleit (Oken Shoji, Tokyo, Japan), and
176	fungal colonization was observed under a light microscope.
177	
178	Molecular identification of mycorrhizal fungi
179	
180	In total, 150 roots from 26 individuals were collected from six sites for molecular
181	identification of mycorrhizal fungi (Table 1). One to 14 root pieces were collected from each
182	individual, and when the individuals had several root clumps on the host tree, root tips were
183	collected from each clump because our preliminary observation showed that if there are
104	
184	several independent rooting zones, each root clump establishes mycorrhizas separately. To
184 185	several independent rooting zones, each root clump establishes mycorrhizas separately. To check the annual change in mycorrhizal associations, the roots were collected each year from
184 185 186	several independent rooting zones, each root clump establishes mycorrhizas separately. To check the annual change in mycorrhizal associations, the roots were collected each year from the same individual (individuals Ea3 and Ea4) for 3 years (Table 2). Collected roots were
184 185 186 187	several independent rooting zones, each root clump establishes mycorrhizas separately. To check the annual change in mycorrhizal associations, the roots were collected each year from the same individual (individuals Ea3 and Ea4) for 3 years (Table 2). Collected roots were washed in water and sectioned with a razor blade, and fungal colonization was confirmed

189	root epidermis was removed from mycorrhizal root tissues and the colonized cortex layer was
190	excised under a stereomicroscope. For sporocarps, a piece of tissue was excised from collected
191	sporocarps and used for molecular identification. The excised mycorrhizal roots and
192	sporocarps were washed in sterilized water and stored in TE buffer (10 mM Tris, 1 mM
193	EDTA, pH 7.5) at -20°C before use.
194	DNA was extracted from the samples of mycorrhizal roots and sporocarps using a
195	DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) following the manufacturer's protocol.
196	PCR and sequencing were performed as described by Ogura-Tsujita and Yukawa (2008). The
197	fungal internal transcribed spacer (ITS) region of nuclear ribosomal DNA (nrDNA) was
198	amplified with ITS1F/ITS4 or ITS1F/ITS4B primer combinations (White et al., 1990; Gardes
199	& Bruns, 1993). To avoid overlooking Tulasnellaceae, a typical orchid symbiont, due to primer
200	mismatch, all root samples were also amplified using the ITS1/ITS4-Tul primer combination
201	(Taylor & McCormick, 2008). The partial large subunit (LSU) nrDNA sequences were
202	additionally amplified using LR0R/LR5 primers (Moncalvo et al., 2000) when the ITS
203	sequence had low resolution in a homology search of the GenBank database. Additional
204	internal primers, ITS2 and ITS3 (White et al., 1990) for the ITS region and LR3 (Vilgalys &
205	Hester, 1990) and LR3R (Hopple & Vilgalys, 1999) for the LSU region were used for
206	sequencing. The PCR products were purified using a Fast Gene Gel/PCR Extraction Kit
207	(Nippon Genetics, Tokyo, Japan) and sequenced using a BigDye Terminator v3.1 Cycle
208	Sequencing Kit (Thermo Fisher Scientific, Waltham, MA, USA). PCR products that were
209	difficult to sequence directly were cloned using a pGEM-T Vector System II (Promega,
210	Madison, WI, USA). Five colonies were sequenced in each cloned sample. Obtained sequences

211	were grouped into operational taxonomic units (OTUs) at 99% similarity, and taxonomic
212	affiliations for each fungal OTU were assigned based on the closest match to sequences
213	available in GenBank using BLAST (http://www.ncbi.nlm.nih.gov/BLAST/). Sequences
214	determined in this study were deposited in the DDBJ/EMBL/GenBank databases. The
215	accession numbers are listed in Table S2 and Table S3.
216	
217	Symbiotic germination
218	
219	To test whether the mycorrhizal fungi identified in this study induce symbiotic germination of
220	E. altissima, mycorrhizal fungi were isolated from roots collected at site S1 in 2013 by the
221	single peloton isolation method (Rasmussen, 1995). Colonized cortex layers of mycorrhizal
222	roots were excised under a stereomicroscope, rinsed three times with sterile water, and cut open
223	under sterile water to release the fungal pelotons. Sterile water mixed with pelotons was
224	dropped onto 2% malt extract agar (MA) plates and incubated at 25°C in the dark. After three
225	days, fungal hyphae growth from coiled pelotons was checked under a light microscope and
226	hyphal tips were transferred to fresh MA plates for subculture and purification. DNA was
227	extracted from fungal isolates as described by Izumitsu et al. (2012) and fungal OTUs were
228	molecularly identified. In total, five fungal isolates that shared 100% ITS sequence homology
229	with the mycorrhizal fungi directly sequenced from colonized roots were used for the
230	co-culture of seeds (Table 4). These isolates were deposited in NITE Biological Resource
231	Center (NBRC110364–110370; Table 4).

232	A mature fruit of <i>E. altissima</i> was collected from site S1 in October 2013. Seeds were
233	stored at 5°C with silica gel until use. Co-culture of seeds and fungi was performed as described
234	by Umata (1997a). Sawdust medium containing 80 mL of Fagus crenata sawdust and 40 mL of
235	culture solution (water, 1% glucose, 1% yeast powder) was prepared in a 200-mL conical flask
236	and autoclaved twice at 98°C for 2 h followed by 210°C for 1 h. The seeds were sterilized with
237	a 10% calcium hypochlorite solution as described by Umata (1997a) and \sim 100 seeds were
238	sprinkled in a sterilized bamboo stick. Each seed stick was incubated for 2 weeks on potato
239	dextrose agar medium to check for contamination of the seeds, and contaminated sticks were
240	removed. Four seed sticks were transferred to sawdust medium and four flasks were prepared
241	for each fungal isolate. A 3×3 -mm ² block of fungal culture was inoculated on the surface of
242	the sawdust medium and cultured for 2 months at 25°C in the dark. The experiment was
243	repeated three times with four flasks per replicate and in total 12 flasks were prepared for each
244	isolate. Seed germination was recorded 2 months after sowing and assigned to two germination
245	stages: stage 1 involved rupture of the testa by the enlarged embryo and included protocorms
246	less than 3 mm in diameter; stage 2 included non-rooted protocorms above 3 mm in diameter or
247	rooted protocorms (Figure 3a). For further development under symbiotic condition, obtained
248	seedlings by culturing with the two isolates (T-13 and T-36) that induced seed germination
249	were transferred to fresh sawdust medium (Figure 3b). As the fungal isolates were colonized in
250	seedling roots, the isolates were also transferred to the medium together with the seedlings.
251	Mycorrhizal roots were collected from a plantlet and colonizing fungus was molecularly
252	identified to confirm whether the root-colonizing fungus in a plantlet was consistent with the
253	original isolates.

254	
255	Decay test
256	
257	It seems likely that a WD fungus with strong decay ability may supply carbon stably to the
258	orchid and E. altissima could prefer such fungus. To evaluate how the fungal decay ability
259	affects orchid seed germination, five isolates used for co-culture were employed for
260	comparison of wood-decay ability based on sawdust weight loss. Approximately 1 g of
261	oven-dried sawdust from C. sieboldii, which is a common E. altissima host tree, was packed in
262	a mesh bag and weighed prior to fungal inoculation. The bags were autoclaved at 121°C for 20
263	min and transferred to plates containing 20 mL of 2% agar medium. A 4-mm plug of fungal
264	culture was inoculated on the agar plates and incubated at 25°C in the dark. After 5 months of
265	culture, the bags were oven-dried at 70°C for 1 week and weighed. The weight lost from the
266	sawdust was determined as a percentage of the initial mass. Three replicates were prepared in
267	each isolate, and three non-inoculated plates served as a control.
268	
269	Isotopic analysis
270	
271	Plant and fungal samples for stable isotope natural abundance analysis were collected at site S1
272	in July 2015. Flower stalk (peduncle and rachis), flower, mycorrhizal and/or non-mycorrhizal
273	root(s) were sampled from five individuals of E. altissima (individual IDs Ea3, Ea4, Ea10,

274 D113, and D114; Figure 4, Table S4) which were all flowering individuals in this site. The

275 individuals labeled Ea3 and Ea4 grew on fallen dead trunks of *D. racemosum* while the other

276	three individuals grew on standing dead trunks or living trees of C. sieboldii whose heartwood
277	and main branches were partially decayed. Mycorrhizal roots for molecular identification were
278	collected from these individuals (Table 2) except for one individual (D114) that had no root
279	clump aboveground. Collection of underground roots from any of the five individuals would
280	have required major disturbances and was avoided for conservation reasons. Current-year
281	leaves and stems of autotrophic reference plants, C. sieboldii, D. racemosum, Psychotria
282	serpens, Damnacanthus indicus, and M. seguinii, were collected within 1 m of each orchid
283	individual (Table S4). Dead stem-wood material, which was expected to be the main substrate
284	for WD fungi, was sampled from each host tree. In total, five sporocarps, T. cf. durum from host
285	trees of Ea3 and Ea4, a WD fungus Microporus sp. from neighboring C. sieboldii and ECM
286	Amanita and Ramaria species within 10 m of E. altissima individuals, were also collected. All
287	sporocarps were identified by morphology or molecular identification and deposited as dried
288	herbarium specimens (TNS-F-80541-80544, 80568). Samples were dried at 105°C, ground to a
289	fine powder and stored in a desiccator with silica gel until use.
290	The relative N and C isotope abundances of the samples were measured using the
291	dual-element analysis mode of an elemental analyzer coupled to a continuous flow isotope ratio
292	mass spectrometer as described in Bidartondo et al. (2004). Relative isotope abundances are
293	denoted as δ values, which were calculated according to the following equation: $\delta^{15}N$ or $\delta^{13}C =$
294	$(R_{sample}/R_{standard} - 1) \times 1000\%$, where R_{sample} and $R_{standard}$ are the ratios of heavy isotope to light
295	isotope in the samples and the respective standard. Standard gases (nitrogen and carbon
296	dioxide) were calibrated with respect to international standards using the reference substances

N1 and N2 for N isotopes and ANU sucrose and NBS 19 for C isotopes, provided by theInternational Atomic Energy Agency (Vienna, Austria).

299	δ values were normalized following the procedure of Preiss and Gebauer (2008) for
300	our comparisons of plant C and N isotope abundances with reference data. Enrichment factors
301	$(\epsilon^{13}C \text{ and } \epsilon^{15}N)$ were calculated using δ values for <i>E. altissima</i> , the reference plants, and
302	sporocarps as follows: $\varepsilon_{Sx} = \delta_{Sx} - \delta_{REFx}$, where <i>S</i> is a single $\delta^{13}C$ or $\delta^{15}N$ value for each sample,
303	<i>x</i> is a sampling plot within a certain study site, and δ_{REF} is the mean value of all reference plants.
304	Differences between ϵ^{13} C and ϵ^{15} N values of <i>E. altissima</i> and each reference plant, and between
305	the stem and leaf of each reference plant, were determined using a Mann-Whitney U-test. A
306	Kruskal-Wallis nonparametric test was used for differences among flower stalks, flowers, and
307	roots of <i>E. altissima</i> .
308	Non-metric multidimensional scaling (NMDS) was used to detect meaningful
309	underlying dimensions and to graphically visualize similarities and dissimilarities between the
310	samples of <i>E. altissima</i> and WD fungi as well as decayed wood samples collected from <i>D</i> .
311	racerosum and C. sieboldii in two-dimensional space. For this, the Bray-Curtis index was used
312	to calculate a distance matrix from ϵ^{13} C, ϵ^{15} N, and N concentration data using the function
313	'metaMDS' with two dimensions and 100 permutations in the R package 'vegan' (Oksanen et
314	al., 2017). The stress value was calculated to evaluate how well the configuration provided a
315	representation of the distance matrix; generally, a stress value of <0.05 provides an excellent
316	representation in reduced dimensions. Fitted vectors were calculated to display the $\epsilon^{13}C$, $\epsilon^{15}N$,
317	and N concentrations in the ordination space and to indicate the differences between the groups
318	in association with these variables. Each arrow shows the direction of the increasing response

319	variable while its length is proportional to the correlation (R^2) between the variable and the
320	ordination (Oksanen et al., 2017). The function 'adonis' in the R package 'vegan' was used to
321	perform a permutational multivariate analysis of variance (MANOVA) to test for significance
322	of differences between group means using the aforementioned calculated distance matrix
323	(Anderson, 2001).
324	
325	Results
326	
327	Molecular identification of mycorrhizal fungi
328	
329	In total, 150 root samples taken from 26 E. altissima individuals from six sites were examined
330	using molecular identification, and fungal sequences were successfully obtained from 141
331	root samples (Table 1). Basidiomycete sequences were grouped into 37 fungal OTUs based
332	on 99% ITS sequence identity, belonging to nine fungal orders (Table S2). The sequences
333	from two fungal OTUs, Trichaptum cf. durum and Coniophorafomes matsuzawae, completely
334	matched those from adjacent sporocarps. Most of the fungal OTUs were WD basidiomycetes,
335	and ECM fungus Russulaceae and orchid mycorrhizal Ceratobasidiaceae, Tulasnellaceae, and
336	Serendipitaceae were additionally identified from the roots (Table S2). Ascomycete lineages,
337	such as Ilyonectria and Trichosporon, which are hyphal endophytes, were also detected at low
338	frequency (Table S3).
339	No common fungal OTU was found among the six sites, except that <i>Phlebia</i> sp.2
340	was detected at both warm-temperate site S1 and subtropical site S6 (Table 2, Table 3). The

Page 16 of 41

341	detected fungal OTUs differed for each individual in most cases, although an identical fungal
342	OTU was detected from different individuals within site S1 (T. cf. durum, Ceriporia sp.1,
343	Phlebia sp.2, and Gymnopus sp.1) and site S6 (Ceratobasidiaceae sp.1, Phanerochaete sp.3,
344	Phlebia sp.2, and Microporus sp.1). Erythrorchis altissima was present at various tree stages,
345	but no correlation was found between the tree stage and the fungal species detected. The WD
346	basidiomycete T. cf. durum dominated E. altissima roots on fallen dead wood of D.
347	racemosum and was the most common through all years of the study period. Erythrorchis
348	altissima frequently appeared on the tree trunk at decay-class 3. The fungi detected from
349	underground roots belonged to diverse fungal lineages including both WD and ECM
350	basidiomycetes. Simultaneous association with both fungal groups within a single individual
351	was found in two individuals: Y159 and Y161 (Table 2). The underground roots without
352	aboveground host trees were associated with WD fungus Ceriporia sp.1 (Y162 and Ea4D;
353	Table 2). This fungal OTU was detected in both aboveground and underground roots (Table
354	2).
355	
356	Symbiotic germination and decay test
357	
358	Five fungal isolates with ITS sequences that were identical to the mycorrhizal fungi directly
359	sequenced from colonized roots were successfully obtained from four individuals at site S1
360	(Table 4). Two isolates, T. cf. durum and Vuilleminia sp.1, induced seed germination (Figure
361	3a), and the number of germinated individuals that inoculated Vuilleminia sp.1 was

362 significantly higher than *T*. cf. *durum* (Table 4). The seedlings developed into plantlets with

363	these isolates after being transplanted into fresh medium (Figure 3b). The wood decay ability
364	of the five isolates was compared using the sawdust weight loss. The average weight losses
365	ranged from 4.1% to 43.5%, with the highest weight losses in <i>Hyphodontia</i> sp.1 (43.5%) and
366	<i>T.</i> cf. <i>durum</i> (41.3%), and the lowest in <i>Ceriporia</i> sp.1 (4.1%).
367	
368	Stable isotope abundances
369	
370	Among five individuals analyzed from site S1, Ea3 and Ea4 grew on fallen dead trunks of <i>D</i> .
371	racemosum, whereas the other three individuals (Ea10, EaD113, and EaD114) grew on
372	standing dead trunks or living trees of C. sieboldii. The former two individuals were
373	associated mainly with the wood-decaying T. cf. durum, and the latter were mycorrhizal with
374	several WD fungi, such as Hypholoma, Phlebia, and Phanerochaete (Table 2). No significant
375	differences in $\delta^{13}C$ or $\delta^{15}N$ were found among orchid flower stalks, flowers, and roots
376	(Kruskal-Wallis test, $P = 0.77$ for $\delta^{13}C$ and 0.81 for $\delta^{15}N$), or between leaves and stems of
377	each reference plant species (Mann-Whitney <i>U</i> -test, $P < 0.05$), except for $\delta^{15}N$ values of <i>D</i> .
378	racemosum (Table S5). The enrichment factor (ϵ) based on the stems of reference plants
379	(Figure 4) showed a similar pattern to the ϵ for the leaves (Figure S2). Thus, the $\epsilon^{13}C$ and $\epsilon^{15}N$
380	values based on the stems are shown as the main data because the stem is the organ equivalent
381	to the flower stalk and was the only material collected from all five E. altissima individuals
382	(Table S4).
383	The δ^{13} C values of <i>E. altissima</i> were significantly enriched compared to those of all

384 reference plant species (Mann-Whitney *U*-test, P < 0.01; Table S5). Based on the enrichment

385	factors, all individuals of <i>E. altissima</i> were highly enriched in 13 C compared to the reference
386	plants, but varied extremely in 15 N, ranging from 0.38% to 7.12% in ϵ^{15} N values (Figure 4a).
387	The individuals growing on <i>D. racemosum</i> did not differ from reference plants in ${}^{15}N$ ($\epsilon^{15}N$:
388	0.38% to 1.60%), whereas those growing on <i>C. sieboldii</i> were highly enriched (ϵ^{15} N: 2.69% to
389	7.12%). Furthermore, the enrichment of ${}^{13}C$ and ${}^{15}N$ in the two former individuals was the
390	closest to those of T. cf. durum that dominated the mycorrhizal roots of these individuals,
391	while the latter was close to a WD Microporus collected from C. sieboldii although the
392	individuals EaD113 and EaD114 (ϵ^{15} N: 4.70% to 7.12%) were more enriched in 15 N than
393	Ea10 (ϵ^{15} N: 2.69% to 3.89%). The ¹³ C and ¹⁵ N enrichments for dead-wood material were also
394	quite different between the two tree species of <i>D. racemosum</i> and <i>C. sieboldii</i> (Figure 4a).
395	Ordination of a Bray-Curtis dissimilarity matrix calculated from ϵ^{13} C, ϵ^{15} N, and N
396	concentration data of <i>E. altissima</i> and WD fungi as well as decayed wood samples collected
397	from <i>C. sieboldii</i> and <i>D. racemos</i> um ($n = 21$) with NMDS elucidated a significant segregation
398	of the two groups in the ordination space (Figure 4b), and a MANOVA showed that the group
399	had a significant effect on the ordination ($R^2 = 0.343$, $P = 0.001$). Fitted vectors in the
400	ordination of E. altissima collected from C. sieboldii and D. racemosum were maximally
401	correlated with ϵ^{15} N (R ² = 0.683, P < 0.001), N concentration (R ² = 0.550, P < 0.001) and ϵ^{13} C
402	$(R^2 = 0.470, P = 0.006)$. Generally, the stress value of the ordination (stress = 0.02) provided an
403	excellent representation (Figure 4b). Thus, the different C and N isotope compositions and N
404	concentrations of the two host tree species C. sieboldii and D. racemosum turned out as drivers
405	for the C and N isotope compositions and N concentrations not only of the wood-decay fungi
406	living on these two tree species, but also for the C and N isotope compositions and N

407	concentrations of the mycoheterotrophic <i>E. altissima</i> individuals collected from the two tree
408	species.
409	
410	Discussion
411	
412	Mycorrhizal associations
413	
414	This study provides clear evidence that <i>E. altissima</i> is associated with a wide phylogenetic
415	range of fungi inhabiting wood and soil. The fungi detected in this study belong to nine fungal
416	orders, which include different functional guilds, mainly including WD fungi but also ECM
417	and typical orchid mycorrhizal fungi (Table S2), although the fungi occurring at low
418	frequency will need further confirmation. Most of the WD fungi detected from E. altissima
419	roots were first found to be mycorrhizal fungi on plant roots in this study, with the exception
420	of the leaf litter or WD fungi Gymnopus and Mycena, which are associated with several MH
421	orchids, such as Gastrodia species (Xu & Guo, 2000; Martos et al., 2009; Kinoshita et al.,
422	2016) and E. cassythoides (Dearnaley, 2006). The ECM genus Russula was found on
423	underground roots of E. altissima, as shown in E. cassythoides (Dearnaley, 2006). Russula is
424	a common mycorrhizal partner in MH plants, such as temperate orchids, Corallorhiza (Taylor
425	& Bruns, 1997, 1999), Limodorum (Girlanda et al., 2006), and monotropoid species of
426	Ericaceae (Bidartondo & Bruns, 2001). The Russula sequences from E. altissima roots share
427	high sequence similarity with those from ECM root tips (Table S2), indicating that some E.
428	altissima individuals partially obtain C from ECM fungi. The typical orchid mycorrhizal

Page 20 of 41

429	fungi, such as Tulasnellaceae, Ceratobasidiaceae, and Serendipitaceae, were also found in <i>E</i> .
430	altissima roots. The ITS sequence of Serendipitaceae sp.1 from roots on decayed wood shared
431	96% homology with that from <i>E. cassythoides</i> , indicating that this fungal group works as a
432	mycorrhizal fungus in Erythrorchis. A series of previous studies demonstrated that 19 fungal
433	species induced seed germination by co-culture in vitro (Table S1), but we could not detect
434	these fungi from E. altissima roots, except for Microporus sp.1, which shared 99% sequence
435	homology with Microporus affinis and was found in two individuals (Table 3). These results
436	suggest that more fungal species could be associated with E. altissima than those found in this
437	study. Ascomycete fungi were also detected from E. altissima roots (Table S3), but most of
438	them are common root endophytes or plant root pathogens (Chaverri et al., 2011), thus these
439	fungi are probably non-mycorrhizal on E. altissima roots.
440	This study also provides clear evidence of a WD-associated mycoheterotroph that
441	lacks mycorrhizal specificity. Previous studies showed that WD-associated MH orchids have
442	mycorrhizal specificity towards single fungal orders, genera, or even species groups (Yamato
443	et al., 2005; Ogura-Tsujita & Yukawa, 2008), whereas multiple fungal orders including
444	saprotrophic and ECM fungi were detected in E. cassythoides (Dearnaley, 2006) and
445	
	Gastrodia nipponica (Kinoshita et al., 2016). A lack of fungal specificity has been shown in
446	<i>Gastrodia nipponica</i> (Kinoshita et al., 2016). A lack of fungal specificity has been shown in some MH plants, such as the ericaceous mycoheterotroph <i>Pyrola aphylla</i> , which is associated
446 447	<i>Gastrodia nipponica</i> (Kinoshita et al., 2016). A lack of fungal specificity has been shown in some MH plants, such as the ericaceous mycoheterotroph <i>Pyrola aphylla</i> , which is associated with a broad range of ECM fungi (Hynson & Bruns, 2009), and species of the MH orchid
446 447 448	<i>Gastrodia nipponica</i> (Kinoshita et al., 2016). A lack of fungal specificity has been shown in some MH plants, such as the ericaceous mycoheterotroph <i>Pyrola aphylla</i> , which is associated with a broad range of ECM fungi (Hynson & Bruns, 2009), and species of the MH orchid <i>Aphyllorchis</i> with multiple ECM families (Roy et al., 2009). While the generalist association
446 447 448 449	<i>Gastrodia nipponica</i> (Kinoshita et al., 2016). A lack of fungal specificity has been shown in some MH plants, such as the ericaceous mycoheterotroph <i>Pyrola aphylla</i> , which is associated with a broad range of ECM fungi (Hynson & Bruns, 2009), and species of the MH orchid <i>Aphyllorchis</i> with multiple ECM families (Roy et al., 2009). While the generalist association of <i>P. aphylla</i> may be an ancestral trait because a partially mycoheterotrophic <i>Pyrola</i> is also a

451	specificity in <i>E. altissima</i> has probably evolved from a photosynthetic orchid with a
452	specialized mycorrhizal association. One of the photosynthetic relatives of E. altissima within
453	Vanilloideae is the climbing orchid genus Vanilla (Cameron, 2009), which is associated
454	mainly with a particular fungal lineage of Ceratobasidiaceae and Tulasnellaceae
455	(Porras-Alfaro & Bayman, 2007).
456	The few common fungal OTUs among the six sites indicate that the differences in
457	fungal OTUs associated with E. altissima may reflect differences in the local community of
458	WD fungi, which are attributed to climate, vegetation, and other environmental factors,
459	although randomness of fungal occurrence and contingency should also be considered. Host
460	tree species and their decay-class may also affect which fungal OTU associates with E.
461	altissima. Erythrorchis altissima on fallen decayed wood of D. racemosum was frequently
462	associated with T. cf. durum in this study (Table 2). Wood in decay-class 3 was the most
463	common among the dead host trees of E. altissima (Tables 2, 3). In early to mid-stages, WD
464	fungal flora, especially corticioids and polypores, are very species rich (Renvall, 1995;
465	Stokland et al., 2012) and WD basidiomycetes are metabolically active in decayed wood
466	(Rajala et al., 2011), which may provide the opportunity for <i>E. altissima</i> to find fungal
467	partners.
468	Underground roots have been associated with ECM Russula, similar to E.
469	cassythoides (Dearnaley, 2006), in addition to WD fungal groups (Table 2). The simultaneous
470	association with both fungal groups within a single individual (Y159 and Y161; Table 2)
471	showed mixed C gain from decayed woods and neighboring ECM-associated autotrophs.
472	Such double association was also found in Gastrodia nipponica, which has been associated

Page 22 of 41

473	mainly with litter-decomposing Mycenaceae and Marasmiaceae with additional association
474	with Russulaceae (Kinoshita et al., 2016). The WD fungus Ceriporia sp.1 was found from the
475	underground roots of the individuals without a host tree (Y162 and Ea4D; Table 2),
476	suggesting that E. altissima can survive without an aboveground host tree by utilizing
477	underground woody debris as a nutrient.
478	Annual root sampling from particular individuals revealed that two individuals (Ea3
479	and Ea4) retained the dominant association with the same fungal OTU, T. cf. durum, for 3
480	years, although other fungal OTUs were partially associated (Table 2). Mycorrhizal roots
481	collected from four to five root clumps within 1.5 m were exclusively associated with T. cf.
482	durum in both individuals, and sporocarps of T. cf. durum were abundant on host logs
483	throughout the study period. These results indicate that this fungal OTU was probably a
484	dominant WD species within these host trunks and continuously supplied nutrients to E.
485	altissima for at least 3 years.
486	
487	Symbiotic germination
488	
489	Among the five isolates, T. cf. durum and Vuilleminia sp.1 induced seed germination and
490	subsequent plantlet formation (Table 4), showing that these two fungal groups that were
491	isolated from adult plants are efficient for seed germination in vitro as well as mycorrhizal
492	association in adulthood. Assessment of decay ability showed that the fungal isolates that
493	were efficient for seed germination do not require a high-decay ability. As the most effective

494 at seed germination, *Vuilleminia* sp.1 showed low weight loss *in vitro* (24.6%), while

495	Hyphodontia sp.1, which did not induce germination, had the highest weight loss (43.5%). No
496	seed germination was observed in three fungal isolates, even though Ceriporia sp.1 was one
497	of the most frequent fungal OTUs at site S1. It is possible that fungal specificity is higher in
498	the germination stage than in adulthood, but deviation from optimal culture conditions for
499	some fungal isolates could be one of the possibilities for non-induction of seed germination.
500	
501	Stable isotope abundance
502	
503	Erythrorchis altissima had C isotope signatures typical of a fully mycoheterotrophic orchid.
504	The ε^{13} C values of <i>E. altissima</i> ranged from 7.39% to 13.27% with an average of 9.97%,
505	which is similar to the two MH orchids, Cyrtosia javanica and Galeola falconeri, both of
506	which are closely related to E. altissima (Cameron, 2009) and are also associated with WD
507	Polyporales ($11.20 \pm 0.68\%$ and $11.87 \pm 0.56\%$, respectively; Lee et al., 2015) and
508	ECM-associated orchids reviewed by Hynson et al. (2016) including 13 MH orchid species
509	(from $6.58 \pm 0.24\%$ to $10.78 \pm 0.62\%$). In addition to ¹³ C enrichment, <i>E. altissima</i> was highly
510	variable in its ^{15}N enrichment, ranging from 0.38% to 7.12% in the $\epsilon^{15}N$ values, which is
511	likely due to the difference in host tree species and/or mycorrhizal fungi (Figure 4). An
512	ordination of a Bray-Curtis dissimilarity matrix calculated from ϵ^{13} C, ϵ^{15} N, and N
513	concentration data supports the conclusion that the host tree species may affect $^{13}\mathrm{C}$ and $^{15}\mathrm{N}$
514	enrichment of <i>E. altissima</i> , WD fungi, and decayed wood, and might be responsible for the
515	significantly segregated groups.

516	Although different functional guilds of fungi were associated with E. altissima, the
517	comparison of ¹³ C and ¹⁵ N enrichments with fungal sporocarps showed that <i>E. altissima</i> gains
518	C mainly from WD fungi of its host tree. ¹³ C and ¹⁵ N enrichment of two individuals on <i>D</i> .
519	racemosum were similar to the WD fungus T. cf. durum, which was the main fungal partner of
520	these individuals (Figure 4, Table 2). The enrichments of other individuals on C. sieboldii were
521	close to the WD fungus Microporus that was collected from C. sieboldii. The individuals,
522	EaD114 and EaD113, were more enriched in ¹⁵ N and seemed to have intermediate values
523	between Microporus and ECM Amanita. Because ECM-associated mycoheterotrophs are
524	highly enriched in ¹⁵ N due to high ¹⁵ N enrichment in associated fungal tissues (Hynson et al.,
525	2016), it seems likely that the high ¹⁵ N enrichment of these individuals was due to
526	simultaneous association with ECM and WD fungi, but more replicates are required to
527	evaluate the mixed C gain of E. altissima.
528	
528 529	Conclusion
528 529 530	Conclusion
528 529 530 531	Conclusion This study is the first to demonstrate that the largest mycoheterotrophs, <i>E. altissima</i> , is
 528 529 530 531 532 	Conclusion This study is the first to demonstrate that the largest mycoheterotrophs, <i>E. altissima</i> , is associated with a wide range of wood- and soil-inhabiting fungi, the majority of which are
 528 529 530 531 532 533 	Conclusion This study is the first to demonstrate that the largest mycoheterotrophs, <i>E. altissima</i> , is associated with a wide range of wood- and soil-inhabiting fungi, the majority of which are WD taxa. Additional associations with ECM and orchid mycorrhizal fungi imply a lack of
 528 529 530 531 532 533 534 	Conclusion This study is the first to demonstrate that the largest mycoheterotrophs, <i>E. altissima</i> , is associated with a wide range of wood- and soil-inhabiting fungi, the majority of which are WD taxa. Additional associations with ECM and orchid mycorrhizal fungi imply a lack of fungal specificity in <i>E. altissima</i> , and this study provides clear evidence of a mycorrhizal
 528 529 530 531 532 533 534 535 	Conclusion This study is the first to demonstrate that the largest mycoheterotrophs, <i>E. altissima</i> , is associated with a wide range of wood- and soil-inhabiting fungi, the majority of which are WD taxa. Additional associations with ECM and orchid mycorrhizal fungi imply a lack of fungal specificity in <i>E. altissima</i> , and this study provides clear evidence of a mycorrhizal generalist that targets diverse lineages of WD fungi. Although most of the WD fungi detected
 528 529 530 531 532 533 534 535 536 	Conclusion This study is the first to demonstrate that the largest mycoheterotrophs, <i>E. altissima</i> , is associated with a wide range of wood- and soil-inhabiting fungi, the majority of which are WD taxa. Additional associations with ECM and orchid mycorrhizal fungi imply a lack of fungal specificity in <i>E. altissima</i> , and this study provides clear evidence of a mycorrhizal generalist that targets diverse lineages of WD fungi. Although most of the WD fungi detected in this study have never been found from plant roots as mycorrhizal fungi previously, the

538	The measurement of C and N stable isotope natural abundances showed that <i>E. altissima</i> is a
539	full mycoheterotroph whose C originates mainly from WD fungi rather than ECM fungi.
540	Woody debris is a large store of C in forest biomass, and WD fungi play a crucial role in the
541	C cycling involved in such woody resources (Stockland et al., 2012). By associating with a
542	diverse range of WD fungi, E. altissima can access this large C pool, which has probably been
543	important for the evolution of such a large mycoheterotrophic plant.
544	
545	Acknowledgements
546	
547	The authors thank A. Abe, H. Enokimoto, I. Ganaha, T. Goto, K. Kaburaki, S. Katsuki, Y.
548	Kawazoe, A. Kinoshita, K. Minemoto, Y. Sakamoto, T. Saito, T. Terada, T. Tetsuka, K. Tone,
549	H. Yamaguchi, T. Yamaguchi for help with field work; K. Kobayashi, K. Ranmitsu for
550	technical support; N. Endo, T. Hattori and K. Sotome for help with fungal identification; T.
551	Shirouzu for valuable suggestion on this paper and C. Tiroch for technical assistance in
552	isotope ratio mass spectrometry. This work was supported by JSPS KAKENHI Grant Number
553	15K18597 and 17K07536, and Research Grant from Yakushima Environmental and Cultural
554	Foundation.
555	
556	Data Accessibility
557	
558	DNA sequences—GenBank Accession nos LC327023-LC327047, LC322331-LC322337.
559	

560 Author contributions

561

- 562 Y.O. designed the research. Y.O., H.X., M.K., M.M. and S.I. contributed to molecular
- 563 experiments. K.T., M.K., T.Y., Y.O. and Y.F. conducted field work and sample collection.
- 564 G.G. and J.M.S. performed isotopic analysis and analyzed the data. H.U. performed *in vitro*
- 565 works. Y.F. and H.X. conducted decay test. N.M. and S.Y. contributed to fungal identification.
- 566 Y.O., G.G., J.M.S. and T.Y. wrote the manuscript.
- 567

568 **References**

- Abadie, J. C., Püttsepp, Ü., Gebauer, G., Faccio, A., Bonfante, P., & Selosse, M. A. (2006). *Cephalanthera longifolia* (Neottieae, Orchidaceae) is mixotrophic: a comparative study
 between green and nonphotosynthetic individuals. *Botany* 84, 1462–1477.
- Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance.
 Austral Ecology 26, 32–46.
- Averyanov, L. V. (2011). The orchids of Vietnam illustrated survey, part 3, Subfamily
 Epidendroideae. *Turczaninowia* 14, 15–100.
- Berg, B., & McClaugherty, C. (2003). Plant litter: decomposition, humus formation, carbon
 sequestration. Berlin, Germany: Springer Verlag.
- Bidartondo, M. I. (2005). The evolutionary ecology of myco-heterotrophy. *New Phytologist*167, 335–352.
- Bidartondo, M. I., & Bruns, T. D. (2001). Extreme specificity in epiparasitic Monotropoideae
 (Ericaceae): widespread phylogenetic and geographical structure. *Molecular Ecology* 10, 2285–2295.
- Bidartondo, M. I., Burghardt, B., Gebauer, G., Bruns, T. D., & Read, D. J. (2004). Changing
 partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons
- 585 between forest orchids and trees. *Proceedings of the Royal Society of London Series*
- 586 *B-Biological Sciences* 271, 1799–1806.

587	Bolin, J. F., Tennakoon, K. U., Majid, M. B. A., & Cameron, D. D. (2017). Isotopic evidence
588	of partial mycoheterotrophy in Burmannia coelestis (Burmanniaceae). Plant Species
589	<i>Biology</i> 32, 74–80.
590	Bradford, J., Weishampel, P., Smith, M. L., Kolka, R., Birdsey, R. A., Ollinger, S.V., & Ryan,
591	M.G. (2009). Detrital carbon pools in temperate forests: magnitude and potential for
592	landscape-scale assessment. Canadian Journal of Forest Research 39, 802-813.
593	Burgeff, H. (1932). Saprophytismus und Symbiose. Studien an tropischen Orchideen. Jena,
594	Germany: Gustav Fischer Verlag.
595	Cameron, K. M. (2009). On the value of nuclear and mitochondrial gene sequences for
596	reconstructing the phylogeny of vanilloid orchids (Vanilloideae, Orchidaceae). Annals
597	of Botany 104, 377–385.
598	Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A. Y., & Samuels, G. J. (2011).
599	Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales,
600	Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in
601	Mycology 68, 57–78.
602	Comber, J. B. (1990). Orchids of Java. Surrey, England: Bentham-Moxon Trust. Royal
603	Botanic Gardens, Kew.
604	Dearnaley, J. D. W. (2006). The fungal endophytes of Erythrorchis cassythoides - is this
605	orchid saprophytic or parasitic? Australasian Mycologist 25, 51-57.
606	Fukasawa, Y., Osono, T., & Takeda, H. (2009). Dynamics of physicochemical properties and
607	occurrence of fungal fruit bodies during decomposition of coarse woody debris of
608	Fagus crenata. Journal of Forest Research 14, 20–29.
609	Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for
610	basidiomycetes: application to the identification of mycorrhizae and rusts. Molecular
611	<i>Ecology</i> 2, 113–118.
612	Gebauer, G., & Meyer, M. (2003). ¹⁵ N and ¹³ C natural abundance of autotrophic and
613	myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal
614	association. New Phytologist 160, 209-223.
615	Girlanda, M., Selosse, M-A., Cafasso, D., Brilli, F., Delfine, S., Fabbian, R., Ghignone, S.,
616	Pinelli, P., Segreto, R., Loreto, F., Cozzolino, S., & Perotto, S. (2006). Inefficient
617	photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by
618	specific association to ectomycorrhizal Russulaceae. Molecular Ecology 15, 491-504.

619	Hamada, M. (1939). Studien über die Mykorrhiza von Galeola septentrionalis Reichb. f
620	Ein neuer Fall der Mykorrhiza-Bildung durch intraradicale Rhizomorpha. Japanese
621	Journal of Botany 10, 151–211.
622	Hamada, M., & Nakamura, S. I. (1963). Wurzelsymbiose von Galeola altissima Reichb. f.,
623	einer chlorophyllfreien Orchidee, mit dem holzzerstörenden Pilz Hymenochaete
624	crocicreas Berk et Br. Science Reports of the Tõhoku University Series 4 (Biology) 29,
625	227–238.
626	Hobbie, E. A., Sánchez, F. S., & Rygiewicz, P. T. (2012). Controls of isotopic patterns in
627	saprotrophic and ectomycorrhizal fungi. Soil Biology and Biochemistry 48, 60-68.
628	Hopple, J. S., & Vilgalys, R. (1999). Phylogenetic relationships in the mushroom genus
629	Coprinus and dark-spored allies based on sequence data from the nuclear gene coding
630	for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly.
631	Molecular Phylogenetics and Evolution 13, 1–19.
632	Hynson, N. A., & Bruns, T. D. (2009). Evidence of a myco-heterotroph in the plant family
633	Ericaceae that lacks mycorrhizal specificity. Proceedings of the Royal Society B:
634	Biological Sciences 276, 4053–4059.
635	Hynson, N. A, Schiebold, J. M. I., & Gebauer, G. (2016). Plant family identity distinguishes
636	patterns of carbon and nitrogen stable isotope abundance and nitrogen concentration in
637	mycoheterotrophic plants associated with ectomycorrhizal fungi. Annals of Botany
638	mcw119.
639	Izumitsu, K., Hatoh, K., Sumita, T., Kitade, Y., Morita, A., Gafur, A., Ohta, A., Kawai, M.,
640	Yamanaka, T., Neda, H., Ota, Y., & Tanaka, C. (2012). Rapid and simple preparation of
641	mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience 53,
642	396–401.
643	Jones, D. L. (2006). Native orchids of Australia. Sydney, Australia: New Holland Publishers.
644	Kinoshita, A., Ogura-Tsujita, Y., Umata, H., Sato, H., Hashimoto, T., & Yukawa, T. (2016).
645	How do fungal partners affect the evolution and habitat preferences of
646	mycoheterotrophic plants? A case study in Gastrodia. American Journal of Botany 103,
647	207–220.
648	Kohzu, A., Yoshioka, T., Ando, T., Takahashi, M., Koba, K., & Wada, E. (1999). Natural ¹³ C
649	and ¹⁵ N abundance of field-collected fungi and their ecological implications. New
650	Phytologist 144, 323–330.

651	Kusano, S. (1911). Gastrodia elata and its symbiotic association with Armillaria mellea.
652	Journal of the College of Agriculture Imperial University of Tokyo 4, 1–65.
653	Leake, J. R. (1994). The biology of myco-heterotrophic (saprophytic) plants. New Phytologist
654	127, 171–216.
655	Lee, Y. I., Yang, C. K., & Gebauer, G. (2015). The importance of associations with
656	saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently
657	under-estimated: novel evidence from sub-tropical Asia. Annals of Botany mcv085.
658	Laiho, R., & Prescott, C. E. (1999). The contribution of coarse woody debris to carbon,
659	nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests. Canadian
660	Journal of Forest Research 29, 1592–1603.
661	Liebel, H. T., Bidartondo, M. I., Preiss, K., Segreto, R., Stöckel, M., Rodda, M., & Gebauer,
662	G. (2010). C and N stable isotope signatures reveal constraints to nutritional modes in
663	orchids from the Mediterranean and Macaronesia. American Journal of Botany 97, 903-
664	912.
665	Martos, F., Dulormne, M., Pailler, T., Bonfante, P., Faccio, A., Fournel, J., Dubois, M-P., &
666	Selosse, M-A. (2009). Independent recruitment of saprotrophic fungi as mycorrhizal
667	partners by tropical achlorophyllous orchids. New Phytologist 184, 668-681.
668	Merckx, V., Stöckel, M., Fleischmann, A., Bruns, T. D., & Gebauer, G. (2010). ¹⁵ N and ¹³ C
669	natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic
670	species associated with arbuscular mycorrhizal fungi. New Phytologist 188, 590-596.
671	Merckx, V. S. F. T. (2013). Mycoheterotrophy: an introduction. In Merckx VSFT, ed.
672	Mycoheterotrophy: the biology of plants living on fungi. Berlin, Germany: Springer
673	Verlag, 19–101.
674	Merckx, V. S. F. T., Freudenstein, J. V., Kissling, J., Christenhusz, M. J., Stotler, R. E.,
675	Crandall-Stotler, B., Wickett, N., Rudall, P. J., Maas-van de Kamer, H., & Maas, P. J.
676	(2013). Taxonomy and classification. In Merckx VSFT, ed. Mycoheterotrophy: the
677	biology of plants living on fungi. Berlin, Germany: Springer Verlag, 19-101.
678	Moncalvo, J. M., Lutzoni, F. M., Rehner, S. A., Johnson, J., & Vilgalys, R. (2000).
679	Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal
680	DNA sequences. Systematic biology 49, 278–305.
681	Ogura-Tsujita, Y., & Yukawa, T. (2008). High mycorrhizal specificity in a widespread
682	mycoheterotrophic plant, Eulophia zollingeri (Orchidaceae). American Journal of
683	<i>Botany</i> 95, 93–97.

684	Ogura-Tsujita, Y., Gebauer, G., Hashimoto, T., Umata, H., & Yukawa, T. (2009). Evidence
685	for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains
686	carbon from saprotrophic Mycena. Proceedings of the Royal Society of London Series
687	B-Biological Sciences 276, 761–767.
688	Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.
689	R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., &
690	Wagner, H. (2017). Vegan: community ecology package. R package version 2.4-2.
691	http://CRAN.R-project.org/ package=vegan.
692	Porras-Alfaro, A., & Bayman, P. (2007). Mycorrhizal fungi of Vanilla: diversity, specificity
693	and effects on seed germination and plant growth. Mycologia 99, 510-525.
694	Preiss, K., & Gebauer, G. (2008). A methodological approach to improve estimates of
695	nutrient gains by partially myco-heterotrophic plants. Isotopes in Environmental and
696	Health Studies 44, 393–401.
697	Rajala, T., Peltoniemi, M., Hantula, J., Mäkipää, R., & Pennanen, T. (2011). RNA reveals a
698	succession of active fungi during the decay of Norway spruce logs. Fungal Ecology 4,
699	437–448.
700	Rasmussen, H. N. (1995). Terrestrial orchids - from seed to mycotrophic plant. Cambridge,
701	UK: Cambridge University Press.
702	Renvall, P. (1995). Community structure and dynamics of wood-rotting Basidiomycetes on
703	decomposing conifer trunks in northern Finland. Karstenia 35, 1-51.
704	Roy, M., Watthana, S., Stier, A., Richard, F., Vessabutr, S., & Selosse, M-A. (2009). Two
705	mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate
706	with a broad diversity of ectomycorrhizal fungi. BMC Biology 7, 51.
707	Selosse, M-A., Martos, F., Perry, B., Maj, P., Roy, M., & Pailler, T. (2010). Saprotrophic
708	fungal symbionts in tropical achlorophyllous orchids: Finding treasures among the
709	'molecular scraps'? Plant Signaling & Behavior 5, 349-353.
710	Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis, 3rd edn. New York, NY, USA
711	London, UK: Academic Press.
712	Stockland, J. N., Siitonen, J., & Jonsson, B. G. (2012). Biodiversity in dead wood. Cambridge,
713	UK: Cambridge University Press.
714	Taylor, D. L., & Bruns, T. D. (1997). Independent, specialized invasions of ectomycorrhizal
715	mutualism by two nonphotosynthetic orchids. Proceedings of the National Academy of
716	Sciences, USA 94, 4510–4515.

717	Taylor, D. L., & Bruns, T. D. (1999). Population, habitat and genetic correlates of
718	mycorrhizal specialization in the 'cheating' orchids Corallorhiza maculata and C.
719	mertensiana. Molecular Ecology 8, 1719–1732.
720	Taylor, D. L., & McCormick, M. K. (2008). Internal transcribed spacer primers and
721	sequences for improved characterization of basidiomycetous orchid mycorrhizas. New
722	Phytologist 177, 1020–1033.
723	Tedersoo, L., Pellet, P., Koljalg, U., & Selosse, M-A. (2007). Parallel evolutionary paths to
724	mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for
725	mixotrophy in Pyroleae. Oecologia 151, 206–217.
726	Umata, H. (1995). Seed germination of Galeola altissima, an achlorophyllous orchid, with
727	aphyllophorales fungi. Mycoscience 36, 369–372.
728	Umata, H. (1997a). Formation of endomycorrhizas by an achlorophyllous orchid,
729	Erythrorchis ochobiensis, and Auricularia polytricha. Mycoscience 38, 335–339.
730	Umata, H. (1997b). In vitro germination of Erythrorchis ochobiensis (Orchidaceae) in the
731	presence of Lyophyllum shimeji, an ectomycorrhizal fungus. Mycoscience 38, 355-357.
732	Umata, H. (1998a). In vitro symbiotic association of an achlorophyllous orchid, Erythrorchis
733	ochobiensis, with orchid and non-orchid fungi. Memoirs of the Faculty of Agriculture,
734	Kagoshima University 34, 97–107.
735	Umata, H. (1998b). A new biological function of Shiitake mushroom, Lentinula edodes, in a
736	myco-heterotrophic orchid, Erythrorchis ochobiensis. Mycoscience 39, 85-88.
737	Umata, H. (1999). Germination and growth of Erythrorchis ochobiensis (Orchidaceae)
738	accelerated by monokaryons and dikaryons of Lenzites betulinus and Trametes hirsuta.
739	<i>Mycoscience</i> 40, 367–371.
740	Umata, H., Fujimoto, T., & Arai, K. (2000). Species richness of the symbiont in Erythrorchis
741	ochobiensis, an achlorophyllous orchid. In 7th International Symposium of the
742	Mycological Society of Japan. Tsukuba, Japan 52–56.
743	Umata, H., Ota, Y., Yamada, M., Watanabe, Y., & Gale, S. W. (2013). Germination of the
744	fully myco-heterotrophic orchid Cyrtosia septentrionalis is characterized by low fungal
745	specificity and does not require direct seed-mycobiont contact. Mycoscience 54, 343-
746	352.
747	Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically
748	amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology
749	172, 4238–4246.

750	White, T. J., Bruns, T. D., Lee, S., & Taylor, J. W. (1990). Amplification and direct
751	sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand
752	DH, Sninsky JJ, White. TJ, eds. PCR protocols: a guide to methods and applications.
753	New York, NY, USA: Academic Press, 315-322.
754	Yamato, M., Yagame, T., Suzuki, A., & Iwase, K. (2005). Isolation and identification of
755	mycorrhizal fungi associating with an achlorophyllous plant, Epipogium roseum
756	(Orchidaceae). Mycoscience 46, 73–77.
757	Xu, J., & Guo, S. (2000). Retrospective on the research of the cultivation of Gastrodia elata
758	BI, a rare traditional Chinese medicine. Chinese Medical Journal 113, 686-692.
759	
760	Figure legends
761	
762	Figure 1 Stem, root, and flower morphology of Erythrorchis altissima. Stems climbing on
763	fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump
764	(c) and thin and elongate roots (d). (e) Underground root clump (bar = 1 cm). (f) Flower of E .
765	altissima.
766	
767	Figure 2 Histology of the mycorrhizal root of <i>E. altissima</i> . (a) Cross section of the entire
768	mycorrhizal root, bars = 1 mm. (b) Enlarged figure of cells colonized by mycorrhizal fungi,
769	bars = 0.05 mm .
770	
771	Figure 3 Seedlings and plantlet formation of <i>E. altissima</i> by symbiotic germination with
772	fungal isolates. (a) Stages in development of seedlings. Stage 1: protocorms with 1-3-mm
773	diameter. Stage 2: protocorms >3 mm or with root development, bar = 1 cm. (b) Plantlet after
774	240 days of culture with fungal isolate Trichaptum cf. durum (T-13).
775	
776	Figure 4 (a) Enrichment factors ε^{13} C and ε^{15} N as calculated for five individuals of <i>E</i> .
777	altissima (flower stalk: square, flower: circle, non-mycorrhizal root: triangle, mycorrhizal
778	root: inverted triangle), sporocarps of wood-decay fungi (cross) and ectomycorrhizal fungi
779	(plus), decayed wood of Distylium racemosum (DW-Dr) and Castanopsis sieboldii (DW-Cs)
780	(diamond) and stems of photosynthetic reference plants (Ref, $n = 25$, green square) collected
781	from site S1. Erythrorchis altissima, sporocarps and decayed wood collected from D.
782	racemosum and C. sieboldii are shown in blue with black margin and red, respectively.

783	Decayed wood samples were collected from host trees of each E. altissima individual. (b)
784	Non-metric multidimensional scaling (NMDS) plot based on the Bray-Curtis dissimilarity
785	matrix calculated from enrichment factors $\epsilon^{13}C$ and $\epsilon^{15}N$ and N concentration data for samples
786	collected from <i>D. racemosum</i> (blue-colored) and <i>C. sieboldii</i> (red-colored) (n = 21). Fitted
787	vectors display the response variables ϵ^{13} C, ϵ^{15} N, and N concentration in the ordination space
788	and indicate the differences between the groups in association with these variables. Stress =
789	0.02, 100 permutations; MANOVA $R^2 = 0.343$, $P = 0.001$.
790	
791	
792	Supporting information
793	
794	Figure S1 Study sites of Erythrorchis altissima shown in Table 1.
795	
796	Figure S2 Enrichment factors ϵ^{13} C and ϵ^{15} N calculated based on leaves of reference plants.
797	
798	Table S1 Studies of in vitro symbiotic germination of E. altissima.
799	
800	Table S2 List of fungal OTUs detected from E. altissima roots.
801	
802	Table S3 List of ascomycetes fungi detected from E. altissima roots.
803	
804	Table S4 Number of samples for isotopic analysis.
805	
806	Table S5 Mean (± 1 SD) δ^{13} C and δ^{15} N values, total N and C concentrations of flowers, roots,
807	leaves or stems of <i>E. altissima</i> and reference plants.

Site		Location	Sampling year	No. of individuals	No. of roots	Voucher		
Warm-temperate area	S 1	Tanegashima Is., Kagoshima, Japan	2013, 2014, 2015	9	91	TNS8505855		
	S2	Tanegashima Is., Kagoshima, Japan	2005	1	5	TNS8505147		
	S 3	Kuchinoerabu Is., Kagoshima, Japan	2013	1	2	_		
Subtropical area	S4	Kunigami, Okinawa, Japan	2007	1	1	TNS8501221		
	S5	Kunigami, Okinawa, Japan	2013	2	10	_		
	S6	Okinawa-city, Okinawa, Japan	2015, 2016	12	41	TNS8505854		

Table 1 Samples of *E. altissima* used for fungal identification. Location, sampling year, number of individuals and roots, and voucher number at each sampling site are listed

Is. = Island

	<u> </u>							C 1							63	G 2
	Site					***		51		F 4		E (5	F (T 10	52	53
Putative	Individual ID	Y 159		Ea3		Y 161	Y 162	DII3		Ea4		Ea4D	Ea6	Ealo	Y05-10	C396
taxonomic	Year collected		2013	2014	2015				2013	2014	2015					
identity	Host tree	Cs	Dr	Dr	Dr	Dr	none	Cs	Dr	Dr	Dr	none	Ej	Cs	Ez	Cs
	(stage)	(F)	(F)	(F)	(F)	(L)		(L)	(F)	(F)	(F)		(S)	(S)	(S)	(L)
	Decay Class	Ν	3	3	Ν	1	_	Ν	2~3	3	3~4	_	3	Ν	N	1~3
Sebacinales	Serendipitaceae sp.1														1	
Trechisporales	Sistotremastrum sp.1														2	
	Hyphodontia sp.1												2			
	Trichaptum cf. durum		11	2	2				11	2	3					
Polyporales	Ceriporia sp.1	2					8					4				
	Ischnoderma sp.1														1	
	Phanerochaete sp.2							2								
	Phlebia sp.1															2
	<i>Phlebia</i> sp.2				2								2			
	Phlebia sp.3													3		
	Phlebia sp.4										1					
Corticiales	Vuilleminia sp.1		2													
Russulales	Russula sp.1					5										
	Russula sp.2	2														
	Scytinostroma sp.1													3		
	Coniophorafomes							2								
	matsuzawae															
Agaricales	Gymnopus sp.1					4			2	1						
C	Hypholoma sp.1													8		
	<i>Mycena</i> sp.1							2								
Atheliales	Athelia sp.1														1	
Not detected	1					1							2			

Table 2 Occurrence of fungal OTUs in each individual of E. altissima at warm-temperate sites

Numbers in brackets indicate the number of root samples in which the respective fungus was detected. The root samples collected from underground are shown in bold. Host tree species (Cs = Castanopsis sieboldii, Dr = Distylium racemosum, Ej = Elaeocarpus japonicus, Ez = Elaeocarpus zollingeri) and the stage of the trees (F = Fallen dead trunk, S = Standing dead trunk, L = Living tree) are shown. The stems of Y162 and Ea4D were creeping on the ground without the host tree. The root samples of Ea3 and Ea4 were collected annually between 2013 and 2015. The level of decay of host trees was categorized into five classes as described by Fukasawa et al. (2009). N means that no data were available. The root samples from which we failed to obtain PCR products are shown as "Not detected".

		S1	<u>61 D. un</u> 65	ussinia at	Subtrop		5			56						
	Site	54	35			F	Б	Г	Г	50	Б	Г		Б		
	Individual ID	Y07	K58-	K58-	Ea	Ea	Ea	Ea	Ea	Ea	Ea	Ea	Ea	Ea	Ea	Ea
Putative	marviduai 1D	-18	1	2	12	21	23	24	28	29	30	31	35	37	45	63
taxonomic	Host tree	Ν	Cs	Cs	Cs	Ms	Sb	Cs	Cs	none	Cs	Cs	Cd	Cs	Ν	Cs
identity	(stage)		(S)	(S)	(S)	(S)	(S)	(L)	(F)		(L)	(S)	(F)	(L)		(F)
-	Decay Class	Ν	N	N	1	N	N	N	N	_	N	N	3	N	_	N
Cantharellales	Tulasnella sp.1		2													
	Ceratobasidiaceae sp.1												2	2		
Trechisporales	Trechispora sp.1	1														
-	Trechisporales sp.1		4													
	Trechisporales sp.2								1							
Hymenochaetales	<i>Fuscoporia</i> sp.1			4												
	Hymenochaetaceae sp.1					2										
Polyporales	Phanerochaete sp.1		2													
	Phanerochaete sp.3									2					1	
	Phanerochaetaceae sp.1															2
	<i>Phlebia</i> sp.2												5		3	
	Phlebia sp.5				4											
	Phlebiopsis sp.1						2									
	Stereum sp.1							2								
	Microporus sp.1											1			1	
	Hyphoderma sp.1										1					
Rssulales	Asterostroma sp.1									3						
Agaricales	Neonothopanus sp.1														1	
Not detected								1	1		1	2	1			

Table 3 Occurrence of fungal OTUs in each individual of *E. altissima* at subtropical sites

Numbers in brackets indicate the number of root samples in which the respective fungus was detected. Host tree species (Cs = Castanopsis sieboldii, Ms = Myrsine seguinii, Sb = Syzygium buxifolium, Cd = Cinnamomum daphnoides) and the stage of the trees (F = Fallen dead trunk, S = Standing dead trunk, L = Living tree) are shown. The stems of Ea29 were creeping on the ground without the host tree. The level of decay of host trees was categorized into five classes as described by Fukasawa et al. (2009). N means that no data were available. The root samples from which we failed to obtain PCR products are shown as "Not detected". Two root samples from K58-1 generated two fugal OTUs from each sample.

Table 4 Results of co-culture of *E. altissima* seeds with fungal isolates. Information about fungal isolates used for culture, percentage weight loss of sawdust exposed for each fungal isolate, and the number of individuals germinated by the co-culture are shown. Fungal isolate numbers, putative taxonomic identity, and NBRC numbers are listed. All isolates were extracted from *E. altissima* roots collected from site S1 in 2013

Isolate	Putative taxonomic identity	NBRC No.	Weight loss of	No. of individuals	No. of individuals
			sawdust (%)	Stage 1	Stage 2
T-13	Trichaptum cf. durum	110364	41.3 ± 2.0	$2.7 \pm 3.2a$	$0.3 \pm 0.7a$
T-22	Gymnopus sp.1	110366	18.1 ± 3.6	0	0
T-31	Hyphodontia sp.1	110368	43.5 ± 1.5	0	0
T-36	Vuilleminia sp.1	110369	24.6 ± 4.5	$16.8 \pm 12.3b$	$6.7 \pm 7.9b$
T-40	Ceriporia sp.1	110370	4.1 ± 0.5	0	0

Values are shown as means \pm SD. Different letters indicate significant differences between the inoculated fungal isolates in each stage (P < 0.05, Wilcoxon rank-sum test). The ITS sequences of all isolates completely matched those directly amplified from root samples listed in Table 2. All isolates were deposited to the NITE Biological Resource Center (NBRC) of the National Institute of Technology and Evaluation of Japan. Seed germination was recorded two months after sowing and assigned to two germination stages: stage 1 involved rupture of the testa by the enlarged embryo and included protocorms less than 3 mm in diameter; stage 2 included non-rooted protocorms above 3 mm in diameter or rooted protocorms.

Figure 1 Stem, root, and flower morphology of Erythrorchis altissima. Stems climbing on fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump (c) and thin and elongate roots (d). (e) Underground root clump (bar = 1 cm). (f) Flower of E. altissima.

141x273mm (300 x 300 DPI)

Figure 2 Histology of the mycorrhizal root of E. altissima. (a) Cross section of the entire mycorrhizal root, bars = 1 mm. (b) Enlarged figure of cells colonized by mycorrhizal fungi, bars = 0.05 mm.

205x82mm (300 x 300 DPI)

Figure 3 Seedlings and plantlet formation of E. altissima by symbiotic germination with fungal isolates. (a) Stages in development of seedlings. Stage 1: protocorms with 1–3-mm diameter. Stage 2: protocorms >3 mm or with root development, bar = 1 cm. (b) Plantlet after 240 days of culture with fungal isolate Trichaptum cf. durum (T-13).

203x75mm (300 x 300 DPI)

