49 research outputs found

    The evolutionary state of short-period magnetic white dwarf binaries

    Get PDF
    We present phase-resolved spectroscopy of two new short-period low accretion rate magnetic binaries, SDSS J125044.42+154957.3 (Porb= 86 min) and SDSS J151415.65+074446.5 (Porb= 89 min). Both systems were previously identified as magnetic white dwarfs from the Zeeman splitting of the Balmer absorption lines in their optical spectra. Their spectral energy distributions exhibit a large near-infrared excess, which we interpret as a combination of cyclotron emission and possibly a late-type companion star. No absorption features from the companion are seen in our optical spectra. We derive the orbital periods from a narrow, variable Hα emission line which we show to originate on the companion star. The high radial velocity amplitude measured in both systems suggests a high orbital inclination, but we find no evidence for eclipses in our data. The two new systems resemble the polar EF Eri in its prolonged low state and also SDSS J121209.31+013627.7, a known magnetic white dwarf plus possible brown dwarf binary, which was also recovered by our method

    NLTT5306: The shortest Period Detached White Dwarf + Brown Dwarf Binary

    Full text link
    We have spectroscopically confirmed a brown dwarf mass companion to the hydrogen atmosphere white dwarf NLTT5306. The white dwarf's atmospheric parameters were measured using Sloan Digital Sky Survey and X-Shooter spectroscopy as T_eff=7756+/-35K and log(g)=7.68+/-0.08, giving a mass for the primary of M_WD=0.44+/-0.04 M_sun, at a distance of 71+/-4 pc with a cooling age of 710+/-50 Myr. The existence of the brown dwarf secondary was confirmed through the near-infrared arm of the X-Shooter data and a spectral type of dL4-dL7 was estimated using standard spectral indices. Combined radial velocity measurements from the Sloan Digital Sky Survey, X-Shooter and the Hobby-Eberly Telescope's High Resolution Spectrograph of the white dwarf gives a minimum mass of 56+/-3 M_jup for the secondary, confirming the substellar nature. The period of the binary was measured as 101.88+/-0.02 mins using both the radial velocity data and i'-band variability detected with the INT. This variability indicates 'day' side heating of the brown dwarf companion. We also observe H{\alpha} emission in our higher resolution data in phase with the white dwarf radial velocity, indicating this system is in a low level of accretion, most likely via a stellar wind. This system represents the shortest period white dwarf + brown dwarf binary and the secondary has survived a stage of common envelope evolution, much like its longer period counterpart, WD0137-349. Both systems likely represent bona-fide progenitors of cataclysmic variables with a low mass white dwarf and a brown dwarf donor.Comment: 9 pages, 11 figures, accepted for publication in MNRA

    L-glutamine improves skeletal muscle cell differentiation and prevents myotube atrophy after cytokine (TNF-α) stress via reduced p38 MAPK signal transduction

    Get PDF
    Tumour Necrosis Factor- Alpha (TNF-α) is chronically elevated in conditions where skeletal muscle loss occurs. As L-glutamine can dampen the effects of inflamed environments, we investigated the role of L-glutamine in both differentiating C2C12 myoblasts and existing myotubes in the absence/presence of TNF-α (20 ng.ml−1) ± L-glutamine (20 mM).TNF-α reduced the proportion of cells in G1 phase, as well as biochemical (CK activity) and morphological differentiation (myotube number), with corresponding reductions in transcript expression of: Myogenin, Igf-I and Igfbp5. Furthermore, when administered to mature myotubes, TNF-α induced myotube loss and atrophy underpinned by reductions in Myogenin, Igf-I, Igfbp2 and glutamine synthetase and parallel increases in Fox03, Cfos, p53 and Bid gene expression. Investigation of signaling activity suggested that Akt and ERK1/2 were unchanged, JNK increased (non-significantly) whereas P38 MAPK substantially and significantly increased in both myoblasts and myotubes in the presence of TNF-α. Importantly, 20 mM L-glutamine reduced p38 MAPK activity in TNF-α conditions back to control levels, with a corresponding rescue of myoblast differentiation and a reversal of atrophy in myotubes. L-glutamine resulted in upregulation of genes associated with growth and survival including; Myogenin, Igf-Ir, Myhc2 & 7, Tnfsfr1b, Adra1d and restored atrophic gene expression of Fox03 back to baseline in TNF-α conditions. In conclusion, L-glutamine supplementation rescued suppressed muscle cell differentiation and prevented myotube atrophy in an inflamed environment via regulation of p38 MAPK. L-glutamine administration could represent an important therapeutic strategy for reducing muscle loss in catabolic diseases and inflamed ageing. This article is protected by copyright. All rights reserve

    A Spitzer Space Telescope Study of the Debris Disks around four SDSS White Dwarfs

    Get PDF
    We present Spitzer Space Telescope data of four isolated white dwarfs that were previously known to harbor circumstellar gaseous disks. IRAC photometry shows a significant infrared excess in all of the systems, SDSS0738+1835, SDSS0845+2257, SDSS1043+0855 and SDSS1617+1620, indicative of a dusty extension to those disks. The 4.5-micron excesses seen in SDSS0738, SDSS0845, and SDSS1617 are 7.5, 5.7 and 4.5 times the white dwarf contribution, respectively. In contrast, in SDSS1043, the measured flux density at 4.5 microns is only 1.7 times the white dwarf contribution. We compare the measured IR excesses in the systems to models of geometrically thin, optically thick disks, and find that we are able to match the measured SEDs to within 3 sigma of the uncertainties, although disks with unfeasibly hot inner dust temperatures generally provide a better fit than those below the dust sublimation temperature. Possible explanations for the dearth of dust around SDSS1043+0855 are briefly discussed. Including our previous study of SDSS1228+1040, all five white dwarfs with gaseous debris disks have significant amounts of dust around them. It is evident that gas and dust can coexist around these relatively warm, relatively young white dwarfs.Comment: 20 pages, including 4 figures. Accepted to Ap

    The Unseen Population of F to K-type Companions to Hot Subdwarf Stars

    Full text link
    We present a method to select hot subdwarf stars with A to M-type companions using photometric selection criteria. We cover a wide range in wavelength by combining GALEX ultraviolet data, optical photometry from the SDSS and the Carlsberg Meridian telescope, near-infrared data from 2MASS and UKIDSS. We construct two complimentary samples, one by matching GALEX, CMC and 2MASS, as well as a smaller, but deeper, sample using GALEX, SDSS and UKIDSS. In both cases, a large number of composite subdwarf plus main-sequence star candidates were found. We fit their spectral energy distributions with a composite model in order to estimate the subdwarf and companion star effective temperatures along with the distance to each system. The distribution of subdwarf effective temperature was found to primarily lie in the 20,000 - 30,000 K regime, but we also find cooler subdwarf candidates, making up ~5-10 per cent. The most prevalent companion spectral types were seen to be main-sequence stars between F0 and K0, while subdwarfs with M-type companions appear much rarer. This is clear observational confirmation that a very efficient first stable Roche-lobe overflow channel appears to produce a large number of subdwarfs with F to K-type companions. Our samples thus support the importance of binary evolution for subdwarf formation.Comment: 30 pages, 10 figures, 11 tables. Accepted for publication in MNRA

    DA white dwarfs from the LSS-GAC survey DR1: the preliminary luminosity and mass functions and formation rate

    Get PDF
    Modern large-scale surveys have allowed the identification of large numbers of white dwarfs. However, these surveys are subject to complicated target selection algorithms, which make it almost impossible to quantify to what extent the observational biases affect the observed populations. The LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope) Spectroscopic Survey of the Galactic anti-center (LSS-GAC) follows a well-defined set of criteria for selecting targets for observations. This advantage over previous surveys has been fully exploited here to identify a small yet well-characterised magnitude-limited sample of hydrogen-rich (DA) white dwarfs. We derive preliminary LSS-GAC DA white dwarf luminosity and mass functions. The space density and average formation rate of DA white dwarfs we derive are 0.83+/-0.16 x 10^{-3} pc^{-3} and 5.42 +/- 0.08 x 10^{-13} pc^{-3} yr^{-1}, respectively. Additionally, using an existing Monte Carlo population synthesis code we simulate the population of single DA white dwarfs in the Galactic anti-center, under various assumptions. The synthetic populations are passed through the LSS-GAC selection criteria, taking into account all possible observational biases. This allows us to perform a meaningful comparison of the observed and simulated distributions. We find that the LSS-GAC set of criteria is highly efficient in selecting white dwarfs for spectroscopic observations (80-85 per cent) and that, overall, our simulations reproduce well the observed luminosity function. However, they fail at reproducing an excess of massive white dwarfs present in the observed mass function. A plausible explanation for this is that a sizable fraction of massive white dwarfs in the Galaxy are the product of white dwarf-white dwarf mergers.Comment: 23 pages, 14 figures and 5 tables. Accepted for publication by MNRA

    The first sub-70 minute non-interacting WD-BD system: EPIC212235321

    Get PDF
    We present the discovery of the shortest-period, non-interacting, white dwarf-brown dwarf post-common-envelope binary known. The K2 light curve shows the system, EPIC 21223532 has a period of 68.2 min and is not eclipsing, but does show a large reflection effect due to the irradiation of the brown dwarf by the white dwarf primary. Spectra show hydrogen, magnesium and calcium emission features from the brown dwarf's irradiated hemisphere, and the mass indicates the spectral type is likely to be L3. Despite having a period substantially lower than the cataclysmic variable period minimum, this system is likely a pre-cataclysmic binary, recently emerged from the common-envelope. These systems are rare, but provide limits on the lowest mass object that can survive common envelope evolution, and information about the evolution of white dwarf progenitors, and post-common envelope evolution

    A search for white dwarfs in the Galactic plane: : the field and the open cluster population

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. The Version of Record [R. Raddi, et al, ‘A search for white dwarfs in the Galactic plane: the field and the open cluster population’, Monthly Notices of the Royal Astronomical Society, Vol. 457 (2): 1988-2004, first published online 5 February 2016] is available online at doi: https://doi.org/10.1093/mnras/stw042. © 2016 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We investigated the prospects for systematic searches of white dwarfs at low Galactic latitudes, using the VLT Survey Telescope (VST) Hα\alpha Photometric Survey of the Galactic plane and Bulge (VPHAS+). We targeted 17 white dwarf candidates along sightlines of known open clusters, aiming to identify potential cluster members. We confirmed all the 17 white dwarf candidates from blue/optical spectroscopy, and we suggest five of them to be likely cluster members. We estimated progenitor ages and masses for the candidate cluster members, and compared our findings to those for other cluster white dwarfs. A white dwarf in NGC 3532 is the most massive known cluster member (1.13 M_{\odot}), likely with an oxygen-neon core, for which we estimate an 8.84.3+1.28.8_{-4.3}^{+1.2} M_{\odot} progenitor, close to the mass-divide between white dwarf and neutron star progenitors. A cluster member in Ruprecht 131 is a magnetic white dwarf, whose progenitor mass exceeded 2-3 M_{\odot}. We stress that wider searches, and improved cluster distances and ages derived from data of the ESA Gaia mission, will advance the understanding of the mass-loss processes for low- to intermediate-mass stars.Peer reviewedFinal Published versio

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
    corecore