49 research outputs found

    The consequences of delaying insulin initiation in UK type 2 diabetes patients failing oral hyperglycaemic agents: a modelling study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent data have shown that type 2 diabetes patients in the UK delay initiating insulin on average for over 11 years after first being prescribed an oral medication. Using a published computer simulation model of diabetes we used UK-specific data to estimate the clinical consequences of immediately initiating insulin versus delaying initiation for periods in line with published estimates.</p> <p>Methods</p> <p>In the base case scenario simulated patients, with characteristics based on published UK data, were modelled as either initiating insulin immediately or delaying for 8 years. Clinical outcomes in terms of both life expectancy and quality-adjusted life expectancy and also diabetes-related complications (cumulative incidence and time to onset) were projected over a 35 year time horizon. Treatment effects associated with insulin use were taken from published studies and sensitivity analyses were performed around time to initiation of insulin, insulin efficacies and hypoglycaemia utilities.</p> <p>Results</p> <p>For patients immediately initiating insulin there were increases in (undiscounted) life expectancy of 0.61 years and quality-adjusted life expectancy of 0.34 quality-adjusted life years versus delaying initiation for 8 years. There were also substantial reductions in cumulative incidence and time to onset of all diabetes-related complications with immediate versus delayed insulin initiation. Sensitivity analyses showed that a reduced delay in insulin initiation or change in insulin efficacy still demonstrated clinical benefits for immediate versus delayed initiation.</p> <p>Conclusion</p> <p>UK type 2 diabetes patients are at increased risk of a large number of diabetes-related complications due to an unnecessary delay in insulin initiation. Despite clear guidelines recommending tight glycaemic control this failure to begin insulin therapy promptly is likely to result in needlessly reduced life expectancy and compromised quality of life.</p

    Differential Producibility Analysis (DPA) of Transcriptomic Data with Metabolic Networks: Deconstructing the Metabolic Response of M. tuberculosis

    Get PDF
    A general paucity of knowledge about the metabolic state of Mycobacterium tuberculosis within the host environment is a major factor impeding development of novel drugs against tuberculosis. Current experimental methods do not allow direct determination of the global metabolic state of a bacterial pathogen in vivo, but the transcriptional activity of all encoded genes has been investigated in numerous microarray studies. We describe a novel algorithm, Differential Producibility Analysis (DPA) that uses a metabolic network to extract metabolic signals from transcriptome data. The method utilizes Flux Balance Analysis (FBA) to identify the set of genes that affect the ability to produce each metabolite in the network. Subsequently, Rank Product Analysis is used to identify those metabolites predicted to be most affected by a transcriptional signal. We first apply DPA to investigate the metabolic response of E. coli to both anaerobic growth and inactivation of the FNR global regulator. DPA successfully extracts metabolic signals that correspond to experimental data and provides novel metabolic insights. We next apply DPA to investigate the metabolic response of M. tuberculosis to the macrophage environment, human sputum and a range of in vitro environmental perturbations. The analysis revealed a previously unrecognized feature of the response of M. tuberculosis to the macrophage environment: a down-regulation of genes influencing metabolites in central metabolism and concomitant up-regulation of genes that influence synthesis of cell wall components and virulence factors. DPA suggests that a significant feature of the response of the tubercle bacillus to the intracellular environment is a channeling of resources towards remodeling of its cell envelope, possibly in preparation for attack by host defenses. DPA may be used to unravel the mechanisms of virulence and persistence of M. tuberculosis and other pathogens and may have general application for extracting metabolic signals from other “-omics” data

    13C Metabolic Flux Analysis Identifies an Unusual Route for Pyruvate Dissimilation in Mycobacteria which Requires Isocitrate Lyase and Carbon Dioxide Fixation

    Get PDF
    Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL) for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using 13C-metabolic flux analysis (MFA). Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with 13C labeled glycerol or sodium bicarbonate. Through measurements of the 13C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate – oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO2 into biomass. As the human host is abundant in CO2 this finding requires further investigation in vivo as CO2 fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using 13C-MFA

    Fumarate Reductase Activity Maintains an Energized Membrane in Anaerobic Mycobacterium tuberculosis

    Get PDF
    Oxygen depletion of Mycobacterium tuberculosis engages the DosR regulon that coordinates an overall down-regulation of metabolism while up-regulating specific genes involved in respiration and central metabolism. We have developed a chemostat model of M. tuberculosis where growth rate was a function of dissolved oxygen concentration to analyze metabolic adaptation to hypoxia. A drop in dissolved oxygen concentration from 50 mmHg to 0.42 mmHg led to a 2.3 fold decrease in intracellular ATP levels with an almost 70-fold increase in the ratio of NADH/NAD+. This suggests that re-oxidation of this co-factor becomes limiting in the absence of a terminal electron acceptor. Upon oxygen limitation genes involved in the reverse TCA cycle were upregulated and this upregulation was associated with a significant accumulation of succinate in the extracellular milieu. We confirmed that this succinate was produced by a reversal of the TCA cycle towards the non-oxidative direction with net CO2 incorporation by analysis of the isotopomers of secreted succinate after feeding stable isotope (13C) labeled precursors. This showed that the resulting succinate retained both carbons lost during oxidative operation of the TCA cycle. Metabolomic analyses of all glycolytic and TCA cycle intermediates from 13C-glucose fed cells under aerobic and anaerobic conditions showed a clear reversal of isotope labeling patterns accompanying the switch from normoxic to anoxic conditions. M. tuberculosis encodes three potential succinate-producing enzymes including a canonical fumarate reductase which was highly upregulated under hypoxia. Knockout of frd, however, failed to reduce succinate accumulation and gene expression studies revealed a compensatory upregulation of two homologous enzymes. These major realignments of central metabolism are consistent with a model of oxygen-induced stasis in which an energized membrane is maintained by coupling the reductive branch of the TCA cycle to succinate secretion. This fermentative process may offer unique targets for the treatment of latent tuberculosis

    Tumor Marker Levels Before and After Curative Treatment of Hepatocellular Carcinoma as Predictors of Patient Survival.

    Get PDF
    BACKGROUND: α-fetoprotein (AFP) is used as a marker for hepatocellular carcinoma (HCC), which is influenced by hepatitis. Protein-induced vitamin K absence or antagonist II (PIVKA-II) is a sensitive diagnostic marker. Changes in these markers after treatment may reflect curability and predict outcome. METHODS: We conducted an analysis of prognosis in 470 HCC patients who received curative treatments, and examined the relationship between changes in AFP and PIVKA-II levels after 1 month of treatment in 156 patients. Subjects were divided into three groups according to changes in both levels: (1) normal (L) group before treatment, (2) normalization (N) or (3) decreased but still above normal level or unchanged (ANU) group after treatment. RESULTS: High AFP and PIVKA-II levels were significantly associated with poor tumor-free and overall survival. The presence of large size and advanced stage were significantly associated with prevalence of DU group. Overall survival in the AFP-L group was significantly better than that of other groups and overall survival in PIVKA-II-L and N groups were significantly better than that of the PIVKA-II-ANU groups. The combination of changes in the AFP- ANU and PIVKA-II- ANU groups showed the worst tumor-free and overall survivals. Multivariate analysis identified high pre-treatment levels of AFP and PIVKA-II and combination of AFP- ANU and PIVKA-II- ANU as significant determinants of poor tumor-free and overall survival, particularly in patients who underwent hepatectomy. CONCLUSION: We conclude that high levels of AFP or PIVKA-II after treatment for HCC did not sufficiently reflect curative efficacy of treatment and reflected a poor predictor of prognosis in HCC patients

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review

    Get PDF
    corecore