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Abstract Infection by the intracellular bacterial pathogen
Mycobacterium tuberculosis (Mtb) is a major cause of mor-
bidity and mortality worldwide. Slow progress has been made
in lessening the impact of tuberculosis (TB) on human health,
especially in parts of the world where Mtb is endemic. Due to
the complexity of TB disease, there is still an urgent need to
improve diagnosis, prevention, and treatment strategies to
control global spread of disease. Active research targeting
avenues to prevent infection or transmission through vaccina-
tion, to diagnose asymptomatic carriers of Mtb, and to im-
prove antimicrobial drug treatment responses is ongoing.
However, this research is hampered by a relatively poor un-
derstanding of the pathogenesis of early infection and the fac-
tors that contribute to host susceptibility, protection, and the
development of active disease. There is increasing interest in
the development of adjunctive therapy that will aid the host in
responding to Mtb infection appropriately thereby improving

the effectiveness of current and future drug treatments. In this
review, we summarize what is known about the host response
to Mtb infection in humans and animal models and highlight
potential therapeutic targets involved in TB granuloma forma-
tion and resolution. Strategies designed to shift the balance of
TB granuloma formation toward protective rather than de-
structive processes are discussed based on our current knowl-
edge. These therapeutic strategies are based on the assumption
that granuloma formation, although thought to prevent the
spread of the tubercle bacillus within and between individuals
contributes to manifestations of active TB disease in human
patients when left unchecked. This effect of granuloma for-
mation favors the spread of infection and impairs antimicro-
bial drug treatment. By gaining a better understanding of the
mechanisms by which Mtb infection contributes to irrevers-
ible tissue damage, down regulates protective immune re-
sponses, and delays tissue healing, new treatment strategies
can be rationally designed. Granuloma-targeted therapy is ad-
vantageous because it allows for the repurpose of existing
drugs used to treat other communicable and non-
communicable diseases as adjunctive therapies combined
with existing and future anti-TB drugs. Thus, the development
of adjunctive, granuloma-targeted therapy, like other host-
directed therapies, may benefit from the availability of ap-
proved drugs to aid in treatment and prevention of TB. In this
review, we have attempted to summarize the results of pub-
lished studies in the context of new innovative approaches to
host-directed therapy that need to be more thoroughly ex-
plored in pre-clinical animal studies and in human clinical
trials.
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Form and function: an introduction to the TB
granuloma and granuloma pathogenesis

Mycobacterium tuberculosis (Mtb), the primary causative
agent of human tuberculosis (TB), remains a prominent global
health concern, despite a decline in total incident cases and
mortality within the last decade [1]. Currently, the lack of an
effective vaccine, reliable diagnostic tests or biomarkers for
latent disease, a limited number of effective antimicrobial
drugs, and the ongoing emergence of multi-drug resistant
Mtb strains continue to challenge current global TB control
efforts. As a result, there is increasing interest in novel thera-
peutic strategies, which improve the host response to Mtb
infection and can be used either alone or in combination with
conventional and future antimicrobial drug treatments.
Gaining a better understanding of the factors that contribute
to protective host responses to Mtb infection will aid in the
discovery of novel therapeutic targets as well as identify ap-
proved drugs that can be repurposed to improve TB treatment
and control (Fig. 1).

The host response to Mtb infection can be broadly charac-
terized as chronic granulomatous inflammation, which is

thought to contain bacilli at the site of infection and prevent
dissemination within and between susceptible individuals.
The clinical manifestations of active Mtb infection are com-
plex and include an aggressive cellular and humoral immune
response aimed at eradicating difficult to kill bacilli as well as
clearing persistent bacterial antigens [2, 3]. However, protec-
tive granuloma formation can become dysregulated, resulting
in an unfavorable inflammatory response and subsequent ex-
tensive tissue damage. Irreversible host tissue damage, as ev-
idenced by lesion necrosis and cavitation, contributes to the
persistence of drug-tolerant organisms as well as contributes
to the spread of infectious bacilli among susceptible individ-
uals [4]. Unregulated inflammation not only results in a failure
to clear infection but also impairs host immunity and cellular
and systemic metabolic homeostasis. This imbalance between
protective and destructive host responses accounts for the var-
iability in the clinical presentation of patients with active TB
disease and the high incidence of latent infections. As a result,
host-directed therapies, which target granuloma formation and
function, should seek to establish a balance between the pro-
tective and destructive nature of this typical response to Mtb
infection.

Fig. 1 Granulomatous inflammation in response to M. tuberculosis
infection can be protective or destructive. The typical host response to
Mtb infection is infiltration of mixed inflammatory cells at the site of
primary infection of macrophages in the lung. The inflammatory
response is thought to be necessary to effectively kill bacilli or to
prevent the spread of infection within or between hosts. The network of
cellular and humoral mediators is complex and a balanced response is
necessary to favor a protective response rather than a detrimental response

that can result in extensive tissue damage, bacterial persistence, and poor
antimicrobial treatment responses. Based on our current knowledge, a
number of therapeutic targets can be identified to not only promote a
more protective response but to also limit tissue damage. These
processes can be promoted or inhibited with existing drugs that can be
used alone or as adjunctive treatment in combination with antimicrobial
drugs
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The factors involved in the control of TB granuloma for-
mation are poorly understood, but involve adaptations by both
the host and pathogen to a changing microenvironment. Al-
veolar macrophages are thought to be among the first and
most important innate host defenses at the site of primary
infection in the lung and the most important effector cells
encountered by Mtb following aerosol exposure. It is general-
ly believed that the ability of bacilli to survive intracellular
killing by macrophages is the initial step in the establishment
of Mtb infection [5]. Mtb parasitizes host cells first as a strat-
egy to avoid innate immune surveillance and second as a
favorable site to replicate even in the face of an aggressive
adaptive cellular immune response. As a consequence, much
attention has been given to modulating early and late re-
sponses to either prevent the establishment of infection or to
control infection following bacterial colonization. In addition,
resident macrophages are instrumental in promoting or or-
chestrating the early inflammatory responses and therefore
have a role in establishing a protective or destructive response.
If the early host defenses fail to eradicate or significantly slow
the growth ofMtb, macrophages contribute to the complicated
and dynamic cytokine- and chemokine-mediated recruitment
of additional inflammatory cells, which form the early infec-
tious lesion [6, 7].

With the establishment of Mtb infection, expansion of le-
sions, and progression of disease, granulomas enlarge and
undergo alterations in their morphological features. These pro-
cesses increase the potential for bacilli to spread from the
primary site of infection, the lung, to other tissues and organs.
During the progression of the inflammatory response, partic-
ularly within the relatively high oxygen concentrations in the
lung, both Mtb bacilli and host cells undergo a variety of
metabolic adaptations in response to immune stimulation.
In vitro model systems have clearly demonstrated how limit-
ing oxygen levels alters Mtb metabolism and drug antimicro-
bial susceptibility [8, 9]. However, very little is known about
how the changingmicroenvironment present during active TB
disease in both humans and animals influences host cells and
what impact metabolic changes have on immune effector
functions. While the role early granuloma formation plays in
eradicating bacilli following Mtb infection is unclear, clinical
manifestations of active TB disease have been directly linked
to a progressive localized and systemic inflammation in re-
sponse to persistent bacilli or Mtb antigens [10]. Progression
of active TB disease, characterized by an increase in granulo-
ma size, number, and distribution, reflects an inability of the
host to effectively eliminate bacilli or clear shed antigens and
thus is indicative of a failed or ineffective immune response.
As a consequence, during the late stages of active disease,Mtb
survives despite increased immune cell infiltration, ultimately
contributing to granuloma formation and organization. Simi-
lar to the early stages of infection, Mtb persistence during the
chronic stages of disease is facilitated by the ability of bacilli

to acquire and utilize host micronutrients and host-derived
intermediates of metabolism needed to survive and replicate
[11].

Another hallmark of progressive TB disease, aside from
organized granuloma formation, is the development of lesions
with central necrosis and cavitation. The appearance of lesions
with these morphotypes represents an important transition to-
ward not only irreversible tissue damage in some patients but
also the establishment of extracellular populations of Mtb.
Extracellular Mtb populations are further isolated from im-
mune effector cells and are functionally tolerant of antimicro-
bial drug treatment. Most granulomatous lesions share funda-
mental structural similarities, but differences in the rate of
progression and transformation accounts for granuloma het-
erogeneity within and between patients, equating to variable
disease progression and response to treatment. Shown in
humans and recently in animal models, heterogeneous pat-
terns of disease evolve as a result of differences in Mtb viru-
lence, host immune status, and the absence of communicable
and non-communicable TB risk factors [12–15]. With the de-
velopment of lesion necrosis and cavitation, some bacilli tran-
sition from an intracellular to an extracellular environment
concurrently with death and lysis of Mtb infected cells. Other
factors, such as the loss of blood supply to expanding granu-
lomas, also contribute to cellular necrosis.

After the release of intracellular bacilli from infected cells,
extracellular organisms become attached or enmeshed within
a complex matrix composed of host- and pathogen-derived
macromolecules. The attachment and colonization of Mtb
within these complex extracellular polymeric substances has
been equated to biofilm formation, similar to other pathogenic
bacteria. However, this concept remains controversial [7, 16,
17]. The adoption of a biofilm-like mode of existence as a
consequence of host cell death could explain in part the ability
of Mtb bacilli to survive within the harsh granuloma microen-
vironment as well as its ability to tolerate antimicrobial drug
treatment [18]. This view suggests that host cell necrosis as a
progression of the host response to Mtb infection is unfavor-
able rather than protective and gives extracellular Mtb in par-
ticular a distinct survival advantage. Although differences
likely exist between biofilms at the air-tissue interface and
those within caseous necrotic granuloma lesions, information
taken from studies of other pathogenic biofilm forming bac-
teria may lend insight into the development of a drug-resistant
Mtb phenotype. The classification of host responses as favor-
able or unfavorable is a concept that evolved from extensive
pathological studies of human TB patients by Canneti and
others, which correlated lesion morphology with the ability
to isolate viable bacilli by culture [2, 19]. In theory, pharma-
cological manipulation of the host response to Mtb infection
aimed at limiting unfavorable host responses as well as pro-
moting more effective natural immunity could be used as an
adjunctive therapy along with antimicrobial drugs. However,
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studies that focus on host-directed therapy specifically
targeting granuloma formation are lacking due to poor under-
standing of the protective role of early granuloma formation
and the factors that determine whether the response to Mtb
infection will be protective or destructive. Although the func-
tional role of the granuloma is still under debate, there are a
number of therapeutic targets that can be directed at granulo-
ma formation and resolution based on our current knowledge.

Protective or destructive: the spectrum of granuloma
function

Currently, two major frameworks exist around the discussion
of the role of the granuloma in TB pathogenesis and treatment.
The granuloma is either considered a critical component of the
protective cellular immune response, serving a vital role in
pathogen containment, or is considered detrimental, contrib-
uting to the clinical manifestations of active TB disease and
persistence of Mtb. The protective view of granuloma forma-
tion stems from the predominance of macrophages and T and
B lymphocytes at the site of infection, which are thought to
have important effector functions against intracellular Mtb.
These cellular infiltrates along with fibrous encapsulation are
thought to form a mechanical and functional barrier to prevent
bacilli dissemination within and between hosts [20]. However,

there is mounting evidence that among Mtb survival strate-
gies, the pathogen has undergone evolutionary adaptations
which enable bacilli to persist in the face of this complex host
response. These physiological and morphological adaptations
not only enable bacilli to subvert host immunity but also allow
bacilli to survive for long periods of time within an intracel-
lular and extracellular microenvironment. This prolonged ba-
cillary survival contributes to the development of latent TB
disease as well as the expression of antimicrobial drug toler-
ance [21]. Among the most widely studied adaptations is the
transition of bacilli from actively replicating to a state of non-
replicative persistence in response to decreasing oxygen con-
centrations. Classical studies by Wayne and others used
in vitro model systems in an attempt to mimic the gradual
decrease in oxygen tension, which occurs in vivo as granulo-
mas form, expand in size, and develop necrosis. However, it is
likely that a decrease in oxygen concentration is just one of
many environmental factors that change as the host response
to Mtb evolves in vivo, which remain difficult to measure
directly [22–26].

The debate over the protective or destructive result of gran-
uloma formation has thus driven recent investigations into the
use of host-directed and specifically granuloma-targeted ther-
apy to either promote natural immunity and healing or to limit
the tissue damaging consequences of advanced granuloma
formation. Excessive pro-inflammatory responses are

Fig. 2 Immune cells responding to M. tuberculosis infection undergo a
metabolic shift. Like other inflammatory diseases, the mixed population
of myeloid cells that respond to Mtb infection undergo a metabolic shift
from oxidative phosphorylation to glycolysis in order survive and
function effectively within the tissue spaces. As cells leave the high
oxygen environment within the blood vasculature, they enter a region
of low oxygen tension. This metabolic shift is necessary to function as

immune effector cells in the early stages of infection but can be
detrimental in a failed immune response associated with active and
progressive TB. Intra and extracellular bacilli are able to exploit the
host metabolic shift to not only survive an aggressive adaptive immune
response but also antimicrobial drug treatment. The changes in both host
and pathogen metabolism can be treated using host-directed therapy
targeting granuloma formation and resolution
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unfavorable in the early stages of infection because they result
in extensive tissue damage prior to the development of Mtb-
specific adaptive immunity. This leads to unregulated inflam-
mation and further tissue damage, creating a microenviron-
ment which promotes the persistence of non-replicating bacil-
li. In contrast, killing of intracellular bacilli bymacrophages as
well as maintaining a balanced inflammatory response early
during infection contributes to the establishment of more ef-
fective adaptive immune protection. Studies have suggested
that tight regulation of the cytokines interferon gamma (IFNγ)
and tumor necrosis factor alpha (TNFα) is important in coor-
dinating protective granuloma formation [27–29]. Studies also
implicate these cytokines in the maintenance of granuloma
structure, and when inhibited, lead to a loss of granuloma
integrity and subsequent reactivation and spread ofMtb. How-
ever, it is unclear whether the loss of granuloma structure is a
consequence of specific cytokine deficiencies or whether dis-
organized granulomas are due to a new wave of acute inflam-
mation in response to reactivated bacterial growth [30].

The cytokine TNFα in particular has a dose-dependent
effect on lesion morphology [29]. The absence of TNFα leads
to an unregulated inflammatory response and uncontrolled
bacterial growth, whereas excess TNFα has been to shown
to compromise lung function [31]. Recent data suggests that
TNFα may also have a direct effect on Mtb or infected mac-
rophages given that anti-TNFα antibody treatment reactivates
bacterial growth in an in vitro granuloma model. Under these
experimental conditions, in vitro granulomas, which are es-
sentially peripheral blood mononuclear cells clustered around
infected cells, lack the structural complexity ascribed to the
ability of in vivo granulomas to contain infection [32]. These
data argue against the functional significance of granuloma
integrity in the control of Mtb growth and dissemination.
However, a balanced concentration of TNFα results in small-
er, more organized lesions [33]. This dose- or time-dependent
cytokine response has been referred to as the Bgoldilocks
effect^: severe, pro-inflammatory responses in the early stages
of infection may benefit the bacteria by promoting more ex-
tensive tissue damage. In contrast, delayed or incomplete
granuloma formation may leave the host un-protected, thus
favoring unrestricted bacterial growth and dissemination in
the late stages of disease [34–36]. This balance between pro-
and anti-inflammatory mediators has been linked to a hyper-
susceptible phenotype in human populations in Vietnam,
where polymorphisms in the leukotriene A4 hydrolase
(LTA4H) lead to either high or low enzymatic activity and
worse disease. In the zebrafish TB model, the lipid mediator
by-product of LTA4H, leukotriene B4, is critical in impairing
anti-inflammatory lipoxins and promoting a balanced produc-
tion of TNFα, which limits high intracellular bacterial loads
and cellular necrosis [37, 38]. Based on this conceptual frame-
work, limiting TNFα production therapeutically in the early
stages of Mtb infection of patients prone to a pro-

inflammatory response could be beneficial. Unfortunately, pe-
ripheral blood levels of this and other cytokines may not re-
flect the dynamic change in cytokine concentrations at the site
of infection, and therefore are not reliable biomarkers on
which to base the timing of therapeutic intervention [39–41].
Recent studies have demonstrated that besides limiting the
effects of TNFα through the use of anti-cytokine antibodies,
other drugs such as metformin, a compound used for the treat-
ment of type 2 diabetes, have off target effects that include
reducing TNFα levels in mice and in an in vitro human mono-
cyte model. Therefore, metformin has recently been consid-
ered for re-purpose in TB treatment [42–44]. Reducing
cytokine-mediated inflammation may assist the natural host
immune responses in clearing Mtb infection while at the same
time maintaining a more balanced inflammatory response,
especially during early granuloma formation.

Then and now: a historical perspective of granuloma
targeted therapy

Historically, treatments specifically targeting the TB granulo-
mas consisted of surgical-based techniques, practiced most
commonly in the pre-antibiotic era. TB patients that were
considered candidates for surgical intervention generally
shared in common lesions with extensive tissue damage often
with lesion necrosis or cavitation. Collapse therapy was
among the first interventional adjunctive granuloma-targeted
therapies with the potential to improve patient survival and
overall TB treatment outcomes. Collapse therapy
encompassed many procedures, including pneumothorax (de-
creasing intra-thoracic negative pressure via introduction of
air into the pleural space), pneumoperitoneum (introduction
of air or gas into the abdominal cavity), phrenic crush (sec-
tioning of the phrenic nerve to induce partial or complete
diaphragm paralysis), thoracoplasty (removal of the ribs from
the chest wall), and extrapleural lucite pack (surgical addition
of inert lucite substance into lung cavities to induce collapse)
[45]. These treatments resulted in partial collapse of the lung
parenchyma as a strategy to reduce dead air spaces within TB
cavities. The overall goal of collapse therapy was to promote
healing of extensively damaged lung parenchyma [46]. The
principle is based on the fact that by collapsing the lung and
associated cavitary lesions, more normal tissue margins be-
come closely apposed, which enables the reestablishment of
blood supply and therefore the promotion of wound healing
and resolution. However, complications such as pleural adhe-
sions and thickening, bronchial fistulae, and secondary bacte-
rial infections limited the therapeutic value of this practice
[47].

Surgical lung re-sectioning of portions or entire lung lobes
referred to as a lobectomy is also a common adjunctive treat-
ment, particularly in patients that fail to respond to
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conventional antimicrobial therapy. The overall goal of re-
moving entire lung lobes is to physically reduce the bacterial
and lesion burden and therefore regions of the lung that were
most refractory to antimicrobial treatment. Similar to collapse
therapy, surgical debulking of damaged tissue aids in re-
establishing vascular perfusion and healing of more normal
tissue to improve drug treatment responses and patient surviv-
al. The development of technological advances including
video-assisted thoracoscopic approaches enablemore efficient
and selective removal of lesions while at the same time reduc-
ing the incidence of postoperative complications [48]. With
the increasing occurrence of multi-drug-resistant (MDR) and
extensively drug-resistant (XDR)Mtb infections, which fail to
respond to antimicrobials drug combinations, lung resections
are still considered safe, viable options to decrease the overall
lesion burden and the majority of drug-resistant bacteria [49].
Patients infected with MDR and XDR strains of Mtb can also
benefit from surgical-based adjunctive treatment in the early
stages of infection to avoid disease progression in patients,
which would otherwise be untreatable [50].

Corticosteroids were explored as a potential host-directed
therapeutic based on their anti-inflammatory properties. Re-
cent meta-analysis indicates that 17 % of TB-associated mor-
tality can be reduced with the use of corticosteroid therapy.
However, when sensitivity analysis was conducted by the
same authors on cases of pulmonary TB alone, there was no
significant reduction in mortality when corticosteroids were
used [51]. Prospective controlled trials have shown that corti-
costeroid use is beneficial in the treatment of meningitis, peri-
cardial, and pleural TB disease. However, clinical and radio-
graphic improvements of pulmonary TB observed in early
stages of corticosteroid treatment were lost at 6 months of
use [52]. Mice infected with the H37Rv strain of Mtb strain
and treated with corticotrophin, cortisone, or hydrocortisone
displayed a significant increase in microbial populations in the
lungs and spleen, had shorter survival times compared to un-
treated mice, and possessed altered lesion morphology [53,
54]. Recently, it has been shown that corticosteroids, such as
dexamethasone, significantly reduce cytokine responses to
TB antigens and interfere with diagnostic assay results [55].
Utilization of oral or inhaled corticosteroids by individuals
with other forms of respiratory illness, such as asthma or
COPD, has also been shown to increase the risk of TB infec-
tion in a dose-dependent manner [56, 57]. Therefore, while
anti-inflammatory properties of corticosteroids may be bene-
ficial in controlling TB in certain stages of disease and in
certain locations, the immunosuppressive functions of corti-
costeroids appear to hinder the clearance of Mtb.

The discovery of the anti-TB drug isoniazid (INH) led to
some of the first studies suggesting that poor antimicrobial
treatment responses were in part due to poor drug penetration
[58]. These studies were designed to determine what effect
lesion morphology had on antimicrobial drug penetration in

human TB patients and guinea pigs with experimental Mtb
infection [58–60]. Barclay et al. using 14C labeled INH, and
others more recently using advanced mass spectrometry-
based techniques, demonstrate that antimicrobial drug pene-
tration is severely impaired in TB lesions with necrosis or
cavitation [61, 62]. As a result of these historical perspectives,
new technology is being used to gain a better understanding of
pharmacokinetics, bioavailability, and penetration of antimi-
crobial drugs alone and in combination [63]. The heterogene-
ity of TB granulomas accounts for the measured differences in
antimicrobial drug penetration and accumulation, a feature
that contributes significantly to poor treatment responses in
humans and animal models [63]. In the C3HeB/FeJ mouse
model and in rabbits, antimicrobial drugs had reduced activity
in large, caseous lesions [12, 13]. This could be in result to
multiple factors such as the size of the lesion, specific drug
combinations utilized, variation in fibrosis, and level of case-
ation. In this way, the necrotic granuloma has been shown to
be a mechanical and functional barrier to anti-microbial treat-
ment, which in part explains the benefit of surgical interven-
tion as an adjunctive therapy. Recently, computational models
have been used to integrate pharmacokinetics, pharmacody-
namics, and specific morphologic features of granulomatous
lesions to illustrate the potential benefits of host-directed ther-
apies specifically targeting the granuloma [64]. The use of this
approach will help gain additional knowledge about the bio-
availability of existing drugs and drug combinations and will
aid in the development of more effective drugs in the future.
Importantly, investigational studies taking this approach can
assess the potential benefits of strategies to increase intra-
granuloma drug penetration of new experimental drugs or
drugs designed to increase blood flow by promoting new ves-
sel formation [65].

The therapeutic potential of granuloma angiogenesis

The inability of antimicrobial drugs to reach therapeutic levels
within granulomatous lesions not only accounts for poor treat-
ment responses but also has the potential to promote the de-
velopment of drug-tolerant Mtb phenotypes and contribute to
the emergence of drug-resistant strains of Mtb. The failure of
antimicrobial drugs to reach therapeutic concentrations may
have a similar effect to improper dosing or patient non-com-
pliance. Therefore, an additional host-targeted therapy aimed
at promoting granuloma vasculature perfusion also has the
potential to improve drug treatment responses. Since oral or
parenterally administered drugs must first reach therapeutic
blood levels, there is a direct correlation between peripheral
blood drug levels and what can be achieved within the TB
lesion. As a consequence, lesion vascular integrity and blood
perfusion have the potential to significantly impact therapeutic
effectiveness of antimicrobial drugs. Granuloma targeted
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therapy can be designed to either promote or inhibit new ves-
sel formation (angiogenesis) depending on the stage of disease
and the overall treatment objective. The potential of granulo-
ma therapy targeting blood vasculature is best illustrated from
the advances made in the treatment of cancer. Although no
live pathogen is associated with cancer development in this
case, the gap in knowledge regarding immunological and met-
abolic changes that occur within the granuloma microenviron-
ment necessitates comparisons to be drawn from this area of
study.

Inhibition of tumor microvasculature serves as the basis of
numerous cancer-based therapies designed to inhibit tumor-
associated new vessel formation, which contributes to the
growth and spread of neoplastic cells. Since tumor metastasis
requires an intact blood supply, and neoplastic cells require the
expression of proangiogenic factors to grow and spread, one
approach to cancer therapy is to restrict growth and metastatic
potential by starving tumors of oxygen and nutrients through
inhibiting angiogenesis [66]. Despite the similarities between
cancer and TB granuloma formation, a therapeutic strategy
designed to promote rather than inhibit granuloma angiogen-
esis would seem to have the greatest therapeutic benefit. Re-
storing granuloma blood supply would not only have the po-
tential to improve antimicrobial drug treatment responses but
would also restore more normal tissue oxygen concentrations,
promote healing, and facilitate more effective infiltration of
effector immune cells to sites harboring persistent, non-
replicating bacilli. However, in the absence of antimicrobial
drug treatment, reestablishing lesion perfusion could be detri-
mental by facilitating bacilli dissemination. Therefore,
granuloma-targeted therapy aimed at restoring vascular perfu-
sion would likely only be used as an adjunctive treatment
along with bactericidal or bacteriostatic drugs [65].

A notable similarity between the tumor and granuloma mi-
croenvironment is localized hypoxia and the development of
central lesion necrosis. In both cases, the development of cen-
tral necrosis is in part due to the inability of tumor and gran-
uloma vasculature to keep up with expansible growth of the
lesions relative to the more normal surrounding tissue. In ad-
dition, the disruption of lesion vasculature is also due in part to
the procoagulant state associated with chronic inflammation
[67, 68]. As mentioned above, in the case of TB granuloma
formation, components of the Mtb cell wall and secreted pro-
teins have the potential to also contribute to the development
of central necrosis [69–71]. Differences in granuloma blood
supply have been shown to be associated with differential
development of granuloma hypoxia and necrosis inMycobac-
terium avium-infected mice [27]. Wild-type mice infected
with M. avium showed alteration of lung vasculature in con-
junction with changing tissue architecture, resulting in marked
reductions in vessel density within the granuloma center. Ad-
ditionally, expression of angiogenic factor mRNA is down
regulated duringmycobacterial infection. Vascular endothelial

growth factor (VEGF), a potent inducer of angiogenesis which
also increases endothelial cell vascular permeability, has been
shown to be increased in the serum of individuals with active
pulmonary TB when compared to both inactive TB infection
and healthy individuals [72, 73]. Therefore, modulating the
presence of these factors may help to prevent the loss of vas-
cularity and thus the formation of caseous necrosis [27]. Al-
though Mtb does not cause the same reduction of vasculariza-
tion, hypoxia, or granuloma necrosis in the majority of mouse
model strains, the guinea pig model of infection has shown
similar pathologic features to that of the human and also re-
mains a driving force for the relevance of necrotic lesion-
bearing mouse models such as the C3HeB/FeJ strain. These
models illustrate the importance of a balance in the expression
of angiogenic factors, which is also relevant to host-directed
Mtb therapeutics intended for humans [74]. Based on these
data, any model, which develops granuloma necrosis or cav-
itation in response Mtb infection, may benefit from this ther-
apeutic strategy. However, more extensive investigation into
this area of research is needed.

The association between granuloma formation and angio-
genesis was also shown in the Mycobacterium marinum
zebrafish embryo infection model. It was demonstrated that
macrophages specifically induced the growth of new vessels
in the inflammatory environment. However, inhibiting VEGF
proved to be beneficial by reducing vascular leakage, and
modulating angiogenic factor signal pathways altered oxygen
availability for mycobacteria [75]. Similar results were seen
when anti-VEGF compounds were utilized in TB patients.
Anti-VEGF compounds were capable of normalizing vascular
integrity in TB patients, reducing granuloma hypoxia, and
promoting small molecule delivery [76]. Reduced angiogenic
activity as a result of neutralizing antibodies targeting VEGF
was also observed in humanmononuclear cells incubated with
sera from TB patients [77]. Pazopanib, a VEGF receptor ty-
rosine kinase inhibitor, currently in clinical trials and shown to
be an effective antitumor therapeutic, may prove to be a viable
option for a TB therapy targeting granuloma angiogenesis
[78]. Pazopanib has been tested in the M. marinum infection
models and has been shown to reduce bacterial burden, reduce
vascular leakiness, decrease Mtb dissemination, and also in-
crease the effectiveness of first line anti-tubercular drug rifam-
picin [75]. The presence of IL-12p40 and TNFα has also been
correlated with the level of sera angiogenic activity, suggest-
ing they may play a role as mediators of angiogenesis [77].
While the zebra fish embryo infection model sheds insight
into multiple effects of angiogenic modulators on granuloma
development, the risks of vascular disruption secondary to use
of pro-angiogenic modulators could be overlooked. Vascular
erosion as a consequence of expanding inflammation in a
zebrafish embryo will not have the same pathological or clin-
ical impact that pulmonary arterial or venous erosion would
have on mammalian animal models or humans. However, the
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risk of hemoptysis secondary to TB cases is low in the devel-
oped world. Only 1.4 % of hemoptysis cases seen at a tertiary
referral clinic were due to active TB infection [79]. While the
risk of hemoptysis-related complications secondary to TB in-
fection increases in countries where TB is endemic, certain
studies show that it may be an indicator of improved survival
and has a lower hazard ratio than other TB-related complica-
tions [80, 81]. Despite these findings, further research on the
use of angiogenic modulators should be conducted in other
animal models to determine if there are any in vivo contrain-
dications when used as host-directed therapies.

While therapies inhibiting angiogenesis have shown
promise in reducing the rate of granuloma formation and
severity, the opposite approach could also be beneficial.
Rather than limit angiogenesis in an area of the granulo-
ma that already has restricted access to host blood supply,
there is the potential that increasing angiogenesis and pro-
moting the blood supply will allow for more efficient
drug penetration and increase the access of host immune
cells to the granuloma [65]. One study demonstrated that
the expression of VEGF in TB patient sera was correlated
with the lack of cavity formation, demonstrating the plau-
sibility of a pro-angiogenic host-targeted therapeutic [82].
An in vitro model of angiogenesis demonstrated that en-
dothelial cells produce increased levels of VEGF,
transforming growth factor (TGF), hypoxia inducible fac-
tor (HIF), epidermal growth factor (EGF), platelet-derived
growth factor (PDGF), fibroblast growth factor (FGF),
and bone morphogenetic protein (BMP) growth factors
when undergoing angiogenesis [83]. Treatments that pro-
mote the transcription of these genes may also promote
granuloma angiogenesis, which could be beneficial for the
reasons described above. In addition, glucagon-like pep-
tide-1 (GLP-1), a hormone involved in glucose homeosta-
sis, has also been shown to promote angiogenesis in a
dose-dependent manner in an in vitro model of human
endothelial cells [84]. Based on these data, GLP agonists
previously developed for anti-diabetic purposes, such as
exenatide, could potentially be utilized as a host-directed
therapy targeting the TB granuloma [85]. Endothelial cells
are dependent upon glucose and glutamine for prolifera-
tion and produce lactate when undergoing glycolysis in
hypoxic environments. Lactate inhibits prolyl hydroxylase
enzymes and promotes the transcription of pro-angiogenic
factors, serving as a driver of angiogenic processes [86].
Since the granuloma represents a hypoxic microenviron-
ment, favoring lactate production via prolyl hydroxylase
inhibitors may be an effective mechanism to also promote
angiogenesis. Overall, angiogenesis is a promising target
for granuloma-directed therapies, and more research is
needed to determine if promotion or inhibition of angio-
genesis is more efficacious in the context of human Mtb
infection.

The granuloma as an interface for metabolism
and immunity

Similar to other inflammatory lesions, TB granuloma forma-
tion is characterized by an altered metabolic state both at the
cellular and systemic level. The metabolic profile of cells that
infiltrate the site of Mtb infection share similarities with the
changing metabolic profile of the Mtb organism itself. The
nature of the granuloma as an inflammatory lesion makes
the metabolism of surrounding immune cells extremely im-
portant in the context of clearance of Mtb infection. The com-
plex relationship between host-pathogen metabolism and Mtb
infection has been recently reviewed [87]. Altered metabolic
features are a result of the environmental stresses found within
the granuloma microenvironment, such as limited nutrient
availability, hypoxia, and low pH. Mtb infection has been
shown to alter the host metabolome, increasing the concentra-
tion of metabolites such as d-gluconic acid, d-lactone, glutaric
acid, butanal, and ethane within TB-positive sputum samples
as a result of increased glucose oxidation, oxidative stress, and
lipid peroxidation [88]. Similar metabolic adaptations have
been demonstrated in guinea pigs infected with Mtb [89, 90].

In response to cytokine- or antigen-mediated stimulation,
immune cells undergo a metabolic shift from oxidative phos-
phorylation to glycolysis (Fig. 2). Rather than utilize the tri-
carboxylic acid (TCA) cycle and oxidative phosphorylation,
activated immune cells produce energy through the uptake
and utilization of glucose for the production of lactate [91].
Much of what is known about the relationship between me-
tabolism and immunity has been learned from the study of
other inflammatory diseases and cancer. Similar to the impor-
tance of blood supply for tumor and granuloma development,
the immune cells that respond to Mtb infection also share
important similarities to cancer cells with regards to cellular
metabolism [92]. Tumor metabolism is broadly characterized
by ametabolic shift from oxidative phosphorylation to aerobic
glycolysis even in the presence of adequate oxygen, through a
process known as the Warburg effect. Tumor cells are depen-
dent upon aerobic glycolysis for growth and survival [93].
Upon activation, immune cells such as macrophages and neu-
trophils undergo a respiratory burst during which they in-
crease oxygen consumption, utilize glucose, and produce su-
peroxide radicals. Additionally, molecules that stimulate a re-
spiratory burst, such as PMA and GM-CSF, regulate the pro-
duction of key glucose transporters [94]. T and B lymphocytes
also undergo a metabolic shift in response to cytokine or an-
tigen stimulation which involves the glucose-regulating
growth hormone insulin. The insulin receptor is a key cell
surface expressed receptor indicative of B and T lymphocyte
activation [95]. Similar to other immune cells, lymphocytes
responding to an inflammatory stimulus favor lipid oxidation,
glutamine catabolism, aerobic and possibly anaerobic glycol-
ysis over glucose oxidation via the TCA cycle [96]. T cell
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activation is dependent upon glucose uptake via GLUT1 and
CD28 stimulation [97]. The emigration of immune cells from
the oxygen-rich blood vasculature to the relatively oxygen-
deplete tissue space at the site of infection alters cellular me-
tabolism to utilize glucose within an inflammatory microen-
vironment [35]. Interleukin-3 (IL-3), a key cellular survival
factor, has been shown to stimulate the translocation of a
key glucose transporter, GLUT1, to the cell surface in a pro-
tein kinase-dependent fashion. IL-3 is also directly related to
the regulation of apoptosis, as inhibiting glucose uptake via
transporters such as GLUT1 enhances apoptosis [98]. As a
result, anti-glycolytic agents such as 2-deoxyglucose have
been explored as an anti-cancer therapeutic strategy to inhibit
glycolysis, the preferred metabolic pathway of tumor cells.

A similar metabolic shift occurs within the TB granuloma
and additional environmental changes such as a reduction or
lack of oxygen within the necrotic granuloma increase the
level of complexity. Although glycolysis is less energy effi-
cient, glycolysis is active under aerobic or anaerobic condi-
tions, enabling immune cells to function even under low ox-
ygen condition [99]. The chronic TB granuloma is character-
istically hypoxic as demonstrated in human TB lesions and a
variety of animal models, particularly those that develop ca-
seous necrosis [22, 25, 26]. Therefore, glycolysis, glucose
transport, and overall glucose homeostasis are key processes
that are relevant to host immune cell function during Mtb
infection. These metabolic processes are regulated via the
phosphatidylinositol 3-kinase (PI3K) pathway and its core
kinases AKT, adenosine monophosphate activated protein ki-
nase (AMPK), and TOR [91]. Hypoxia has also been demon-
strated to suppress glutamine entry into the TCA cycle, and
glutamine-dependent metabolic pathways have been shown to
be important cellular survival strategies within hypoxic envi-
ronments [44]. Immune cells are able to adapt to decreasing
oxygen tension via activation of hypoxia-inducible factor 1
(HIF-1), which functions via adenosine receptor signaling
pathways [100]. In contrast, excessive glucose uptake can be
detrimental to the cell, resulting in activation of pro-apoptotic
factors and cell death. As a consequence, the ability to main-
tain a balance in metabolic homeostasis within immune cells
and systemically is critical for a protective immune response
to Mtb infection [101].

Tyrosine kinases, key host signaling molecules, which play
a role in mycobacterial entry and survival within macro-
phages, have recently been implicated as targets for host-
directed therapeutics. Host tyrosine kinases function as regu-
lators of phagosomal acidification, lysosomal mobility, and
autophagy in macrophages and inhibition results in increased
acidification of monocyte-derived macrophages [102]. In an
infection model of M. marinum, the utilization of a tyrosine
kinase inhibitor proven successful for antitumor treatments,
imatinib, successfully reduced bacterial load, reduced lesion
pathology, was effective against rifampicin-resistant

M. marinum strains, and worked synergistically with rifampi-
cin to reduce bacterial burden. Furthermore, when imatinib
was utilized in a murine Mtb infection model, similar de-
creases in bacterial load were observed [103]. A murine Mtb
infection model also demonstrated that orally administered
imatinib facilitated a growth reduction of intracellular bacilli
[102]. The utilization of imatinib in conjunction with conven-
tional antimicrobials is thus a promising host-directed therapy
targeting macrophages within the TB granuloma. Imantinib
has also been shown to affect T cell function, inhibiting pri-
mary T cell proliferation and reducing expansion of primary
cytotoxic T cells (101). In the context of Mtb infection, utiliz-
ing imatinib to inhibit certain T cell population expansions
may help to down regulate the production of key pro-
inflammatory cytokines, which push the balance of the gran-
uloma toward destructive processes.

Metformin is one of the safest and most widely prescribed
drugs in the world and, when combined with dietary changes
and exercise, helps in maintaining more normal blood glucose
levels in patients with type 2 diabetes. Metformin, a biguanide
class of anti-diabetic drugs, lowers blood glucose levels via
inhibition of gluconeogenesis in the liver by targeting the mi-
tochondrial complex I, thus limiting dysregulation in kinase
signal pathways and altered lipid metabolism [104]. Although
used for the treatment of diabetes and more recently as an
adjunctive treatment for cancer, studies have shown the po-
tential of metformin as an adjunctive TB therapy as well [43,
105]. Metformin has been shown to restrict Mtb growth, re-
duce tissue pathology and chronic inflammation, enhance the
host immune response, and decrease overall TB severity in
animal models [43]. This occurs as a result of increased host
production of reactive oxygen species, increased acidification
of phagosomes containing Mtb, and activation of AMPK-
dependent pathways [43]. Further, metformin has demonstrat-
ed potential to increase the efficacy of conventional TB treat-
ment options [43, 105]. The early success of metformin in TB
animal models points to the targeting of host metabolism,
which assists in enhancing protective features of the granulo-
ma. This application also illustrates the potential value of
repurposing drugs as adjunctive TB treatment as a viable
host-directed therapeutic approach.

Macrophages within the granuloma also have altered lipid
metabolism that develops over the course of infection, as
reflected by a foamy phenotype resulting from accumulated
cytoplasmic lipid droplets and lipid storage organelles [106,
107]. This phenotypic change is accompanied by an up regu-
lation of lipid synthesis and sequestration pathways, and is
correlated with granuloma caseation. Triacylglycerol (TAG),
cholesterol, and cholesterol esters are the most abundant lipids
present in TB granuloma lesions [108]. The accumulation of
TAG is also associated with the formation of lipid bodies
within foamy macrophages. Macrophages accumulate TAG
under hypoxic conditions, and Mtb acquires TAG from these
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host cells and further utilizes host TAG to synthesize its cell
wall lipids [109, 110]. The Mtb TAG synthetic pathway di-
verts carbon away from the TCA cycle and as a result has been
implicated in the development of in vivo drug tolerance. This
is supported by evidence that Mtb remains sensitive to anti-
microbials if the TAG synthesis pathways are disrupted [111].
Furthermore, Mtb is able to direct fatty acid metabolites to-
ward pathways that prevent their toxic accumulation within
the granuloma [11]. Cholesterol esters are typically produced
by foamy macrophages; thus, their presence in granulomas is
indicative of a degenerative process which may lead to cell
death and contribute to the development of caseous necrosis
[112]. Labeling of macrophage with proprionate, oleate, and
stearate within lipid droplets prior to infection demonstrated
that Mtb has access to and incorporates host fatty acids into its
cell wall lipids [11]. Mtb is also capable of utilizing host-
derived fatty acids, lipids, and cholesterol as alternative car-
bon sources during infection [87]. The induction of foamy
macrophage formation has been linked to decreased host cell
glycolytic activity and enhanced ketone body synthesis via G
protein-coupled receptor GPR109A feedback [107]. Inhibi-
tion of GPR109A resulted in dose-dependent reduction in
bacterial survival, a reduction in the number of infected cells,
reduced bacillary load, and diminished lipid bodies of alveolar
macrophages in vivo [107]. Therefore, G protein coupled re-
ceptor inhibitors may be a viable treatment option to target
progression of granuloma pathology during Mtb infection.
Vitamin D, an essential molecule for IFNγ-mediated antimi-
crobial activities for macrophages infected with Mtb, was
found to reduce the accumulation of lipid droplets in host
macrophages and down regulate the proadipogenic peroxi-
some proliferator-activated receptor γ (PPARγ) [113, 114].
VitaminD signaling pathways may therefore also be a strategy
for host-directed therapies targeting granuloma formation.

As the macrophage becomes glucose deprived, Mtb begins
to utilize host lipids as a primary source for metabolic function
and alters glycolytic pathways to function under reduced ox-
ygen tension [87, 115]. Mtb will preferentially utilize
gluconeogenic carbon substrates, such as fatty acids, during
infection [116]. This alternative metabolic pathway under lim-
ited oxygen conditions involves up regulation of genes in-
volved in reverse TCA cycle activity and results in the accu-
mulation of succinate [117]. Succinate has been shown to be
essential to the adaptation of Mtb to hypoxia, allowing the
bacilli to maintain membrane potential and ATP synthesis
[118]. Furthermore, isocitrate lyase, an enzyme associated
with the glyoxylate shunt and which is capable of producing
succinate under alternate metabolic pathways, is required for
Mtb growth and virulence in vivo [119]. The host immune
response is capable of taking advantage of the bacterium’s
need for succinate. Immuno-responsive gene 1 has been
discussed as a potential Mtb inhibitor since it produces
itaconic acid, an analog to succinate, which is capable of

inhibiting isocitrate lyase pathways in activated macrophages
[87, 120, 121]. The importance of succinate and its synthesis
pathways in the progression of Mtb infection and ability for
Mtb to persist inside the granuloma demonstrate potential for
host-directed therapies.

Advanced glycation end products in TB disease

Advanced glycation end products (AGEs) are modified pro-
teins, which have chemically reacted with sugar residues, such
as glucose, thus significantly altering protein structure and
function [122, 123]. AGEs can function in both receptor-
dependent and receptor-independent mechanisms. AGEs have
been widely studied in the context of diabetes and hypergly-
cemia. High glucose concentrations combined with oxidative
stress lead to accelerated glycation via generation of interme-
diate reactive aldehydes, and have been shown to be central in
the pathogenesis of diabetic vascular complications. Circulat-
ing AGEs are capable of creating more AGEs, which further
amplifies their toxic effects [122]. AGEs affect endothelial
cell junctions, increasing vascular permeability, and may in-
duce apoptosis in some cases. However, angiopoietin 1, a
protective endothelial cell factor with anti-apoptotic proper-
ties, has been demonstrated to provide protection to endothe-
lial cells following AGE exposure [124]. The receptor of AGE
(RAGE) has been found on the surface of macrophages and
endothelial cells and plays an important role in inflammation.
Oxidative stress has been linked to AGE production, and in-
creases in reactive oxygen species (ROS) have been positively
correlated to increased AGEs and increased glucose. Further-
more, antioxidants such as Resveratrol are capable of amelio-
rating this effect [125]. In microenvironments with oxidative
stress, there are also low levels of the soluble RAGE receptor,
which has been shown to have therapeutic potential. Utilizing
the soluble form of the RAGE receptor as a competitive bind-
ing agent may help reduce circulating AGE concentrations.
Anti-AGE compounds, such as pyridoxamine, are being stud-
ied in the context of diabetes treatment and could be applied as
an adjunctive host-directed therapy targeting the granuloma,
based on the aforementioned functions of AGEs in TB disease
progression. AGEs contribute to vascular complications via
induced dysfunction of endothelial progenitor cells.
Rosiglitazone, an agonist of PPARγ, is capable of reversing
AGE-mediated inhibition of endothelial cells via the PI3K-
AKt-eNOS pathway [126]. GLP-1 receptor agonists, such as
exendin-4, have also been shown to repress RAGE expression
and subsequently inhibit hyperglycemia-induced apoptosis
[127]. Interaction of AGE with RAGE results in an induction
of an oxidant stress cascade regulated by MAP kinases [128].

Recent research has revealed that AGEs play a role in Mtb
infection and TB disease progression. RAGE is known to be
constitutively expressed in the lung and it has been shown that
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levels of RAGE are elevated in mice infected withMtb as well
as human cells stimulated withMtb antigens [129, 130]. How-
ever, mice which lack the RAGE gene display enhanced in-
flammation, increased edema, elevated levels of pro-
inflammatory cytokines, and increased numbers of leukocytes
at the site of infection [130]. These results suggest that RAGE
signaling is important in maintaining the balance between a
destructive and a protective granulomatous lesion and that up
regulating RAGE signaling may help to control chronic infec-
tion. The guinea pig model of infection also points to a role of
AGEs in TB infection. In a non-diabetic hyperglycemia-in-
duced guinea pig comorbidity model of TB infection, hyper-
glycemia increased TB disease severity, and Mtb infection
induced the formation and accumulation of AGEs in serum
as well as within granulomatous lesions [131]. Interestingly,
AGE accumulation was shown to increase in Mtb-infected
guinea pigs, regardless of whether the animal was dosed with
sucrose or water as a carrier control, but sucrose feeding re-
sulted in a greater accumulation of tissue AGEs. In vitro mac-
rophage infection models with BCG also demonstrate AGE
accumulation as a result of increased methylglyoxyl, a potent
glycating agent, contributing to mycobacteria-induced apo-
ptosis [132]. Generation of AGEs within foci of chronic in-
flammation may contribute to cell and tissue damage within
the TB lesion based on engagement of AGE with the RAGE
receptor on endothelial cells surfaces [133].

RAGE has been linked to autophagy and the establishment
of neutrophil extracellular traps (NETS) in the context of ad-
enocarcinoma [134]. NETs consist of a complex of neutrophil
expelled chromatin, granule proteins, and released ROS and
function in a wide variety of pathogenic infections [135]. Mtb
has been shown to induce NETs in vitro, and Mtb induced
NETs result in a pro-inflammatory activation of macrophages
[136, 137]. The enhancement of AGE and RAGE production
during Mtb infection may therefore contribute to production
of NETs, activation of macrophages, and chronic inflammato-
ry progression of granuloma lesions. As a result, treatment
which targets the production of AGEs and RAGE within the
granuloma could either serve to enhance macrophage function
and accelerate macrophage killing of Mtb or could serve as a
mechanism by which the chronic inflammation of advanced
TB patients could be reduced. Metformin could be utilized for
this purpose, as it is capable of reducing the impact of AGE
production via suppression of RAGE in an AMPK-dependent
fashion [138].

Currently, there are no FDA approved or available drugs
that specifically prevent the formation and accumulation of
AGEs in humans or animals. Aminoguanidine has received
the most attention to date as a potential anti-glycation thera-
peutic and is considered the gold standard for anti-AGE activ-
ity. Aminoguanidine showed efficacy in animal models of
AGE accumulation and entered into clinical trials in 1996.
Despite one phase III clinical trial in which aminoguanidine

was shown to reduce the progression of diabetic retinopathy
and lower low-density lipoprotein (LDL) and triglyceride
levels, a further trial was discontinued due to both a lack of
efficacy and safety concerns. Aminoguanidine is reported to
result in several side effects including the following: flu-like
symptoms, gastrointestinal disturbances, and anemia, and is
not currently being investigated for the treatment of AGEs
[139]. Besides inhibiting AGE formation, aminoguanidine
has also has been shown to be immunosuppressive by
inhibiting the enzyme nitric oxide synthase, unrelated to
AGE inhibition. Furthermore, the newest experimental anti-
AGE drug, ALT-711, failed in human clinical trials due to an
inability to reduce AGE levels in vivo.

Our laboratory has shown that first generation bis-2-
amnoimidazole (B-2-AI)-derived compounds exhibit potent
anti-glycating activity in vitro and are ×100 more active as
anti-glycating compounds than aminoguanidine [140]. One
lead compound inhibited glycation by 65 % when bovine
serum albumin was treated with the potent glycating agent
glycolaldehyde. In comparison, aminoguanidine inhibited
35 % AGE formation by glycolaldehyde. We have previously
shown that mono 2-aminoimidazoles are non-toxic to mam-
malian cells and model organisms [141]. These data generated
from first generation compounds demonstrate that B-2-AI de-
rivatives have therapeutic potential as potent anti-glycating
compounds that may have value as adjunctive treatment for
TB. More recently, we have demonstrated that second gener-
ation compounds exhibit increased AGE inhibition and break-
ing activity in a series of in vitro screening assays [142]. Small
molecules that inhibit or break preformed AGEs as a by-
product of chronic inflammation and altered host metabolism
have clinical potential as adjunctive granuloma-targeted
therapy.

The promotion of healing: a balance
between extracellular matrix destruction
and production

Another approach to therapeutically targeting TB granulomas,
besides limiting the destructive inflammatory response, is to
promote tissue healing. The processes related to the resolution
and repair of damaged tissues occur simultaneously with TB
granuloma formation. The rate and extent of granuloma re-
gression is determined by the balance between the mediators
of tissue destruction and the factors that oppose or regulate
those mediators [143]. Much attention has been given to ma-
trix metalloproteinase (MMP) activity in TB pathogenesis and
specifically lesion cavity formation, which is among the most
severe manifestations of active TB disease [144]. MMPs are
zinc-dependent proteases that degrade a variety of proteins
that comprise the extracellular matrix [145]. In humans, there
are 23 different MMPs described, several that have been
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shown to be important in TB pathogenesis. The proteins that
have been specifically linked to Mtb infection include MMP-
1, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, and others
[146–151]. MMPs are produced by a variety of cell types
including inflammatory and immune cells, fibroblasts, and
epithelial cells. In addition, several Mtb proteins have been
shown to have direct MMP functions or to activate host
MMPs, which are secreted as inactive zymogens with a pro-
peptide domain, such that extracellular proteolytic cleavage is
required for biological activity [145]. MMPs are important in
the early stages of protective granuloma formation, but have
also been linked to early granuloma as well as TB cavity
formation [152]. The extracellular activation of MMPs is in
part regulated by tissue inhibitors of metalloproteinases
(TIMPs), which are endogenous protease inhibitors that regu-
late MMP function. Quantitation of circulating and sputum
MMPs has been proposed as biomarkers of active TB disease
and polymorphisms in MMP genes have been linked to Mtb
susceptibility [153, 154]. Moreover, recent studies have sug-
gested that there are gender differences in the expression of
MMPs in patients with active TB disease [155].

The role MMPs play in the pathogenesis of a wide variety
of communicable and non-communicable diseases such as
cardiovascular disease has driven the development of synthet-
ic inhibitors that have potential as adjunctive therapies in the
treatment of TB. Since MMPs are zinc-dependent, specific
inhibitors have been designed to target or chelate the zinc
ion as either broad spectrum or selective inhibitors and several
are in various stages of clinical trials. The antimicrobial drug
doxycycline at subantimicrobial doses has been shown to in-
hibit MMPs and currently is the only drug that is clinically
available for this purpose. Recent studies have demonstrated
that neutrophil-derivedMMP-8was highly expressed in NETs
within cavities of TB patients and that doxycycline was effec-
tive at limiting collagen destruction byMtb-mediated MMP-8
[156]. Doxycycline has been shown to not only have antimi-
crobial activity in vitro but to also reduce the bacterial burden
of guinea pigs infected with Mtb [157]. These and other data
demonstrate that currently available and approved drugs can
serve to limit the destructive consequences of TB granuloma
formation as adjunctive therapy. However, because MMPs aid
immune effector cell migration and function at the site of
infection, the use of this approach is also limited by the ability
to time administration to gain the greatest therapeutic potential
[158].

Promoting tissue repair and healing can also be accom-
plished by therapeutic modulation of extracellular matrix lysis
as a strategy to limit the unfavorable consequences of Mtb
infection. Much is known about the relative expression and
immunomodulatory functions of the major cytokines and
chemokines associated with Mtb infection in humans and an-
imals. The cytokine network is complex and reflects the si-
multaneous and dynamic interplay between immune cell

stimulation and down regulation and thus the balance between
disease progression and resolution [159]. The expression of
transforming growth factor β (TGF-β) and other immunosup-
pressive cytokines has been studied extensively as major im-
mune modulators and as biomarkers for active TB and re-
sponse to antimicrobial drug treatment [160–165]. Inhibition
of TGF-β in particular has been proposed as an attractive
therapeutic target to minimize the negative effect on protective
immune responses [166, 167]. However, TGF-β is a major
fibroblast growth factor and is critical to stimulating the nec-
essary extracellular matrix proteins needed to repair tissue
damaged by Mtb infection [168]. TGF-β is produced by nu-
merous different cell types and is considered an anti-
inflammatory cytokine with diverse biological functions.
Among the most important immunomodulatory functions is
the inhibition of immune cell proliferation and regulation of
CD4+ Tcell differentiation into Foxp3+ regulatory Tcells and
Th17 cells that are thought to limit the anti-TB effector cell
functions. TGF-β gene polymorphisms have been linked to
Mtb susceptibility in humans [169, 170]. Moreover, the lack
of TGF-β expression or inhibition with drugs or therapeutic
an t i bod i e s has been shown to be an e f f ec t i ve
immumunomodulatory strategy in vitro and in vivo [159,
169, 171–173]. The negative consequences of inhibiting
TGF-β and other similar growth factors however may be a
delay in lesion healing and may inadvertently prolong TB
disease and Mtb persistence [174]. Therefore, similar to other
therapeutic approaches designed to shift the balance in favor
of a more protective immune response, the disadvantages are
that other non-immune yet protective host responses will be
negatively impacted [175]. Little is known about the impact
these strategies will have on the overall resolution of TB dis-
ease and more research is needed to adequately weigh the
overall benefits, taking into account the full spectrum of host
responses to Mtb infection.

Concluding remarks and future directions

Current opinion on the functional role of the TB granuloma
and subsequent approaches to host-directed therapies which
target the granuloma are still evolving. Mtb-host interactions
within the granuloma remain complex and it is still unclear if
the granuloma is protective or destructive to the host. Further,
very little is known regarding how a severe necrotic lesion
would respond to therapy in comparison to developing lesion
at an earlier stage of disease. This review sought to discuss
multiple approaches to host-directed therapy in the form of
angiogenic, metabolic, AGE, and extracellular matrix modu-
lators. Further research is needed to gain more information
about the efficacy of these therapeutic approaches. Also,
in vivo animal models will need to be utilized in order to
assess the overall effectiveness of the host-directed therapies
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discussed here as adjunctive treatment with conventional an-
titubercular agents. The heterogeneity of lesion presentation
and range of lesion severity within an individual will likely
have an effect on host-directed therapeutic options as well.
The need to develop therapies to be applied in conjunction
with current antimicrobials remains apparent. This review
sought to summarize and explore current as well as novel
avenues for host-directed therapies targeting the TB granulo-
ma. Finding effective ways to balance the granulomatous in-
flammatory response will be on the forefront of the develop-
ment of host-directed therapies for TB.
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