3,229 research outputs found

    Tabula Rasa and Human Nature

    Get PDF
    It is widely believed that the philosophical concept of 'tabula rasa' originates with Locke's Essay Concerning Human Understanding and refers to a state in which a child is as formless as a blank slate. Given that both these beliefs are entirely false, this article will examine why they have endured from the eighteenth century to the present. Attending to the history of philosophy, psychology, psychiatry and feminist scholarship it will be shown how the image of the tabula rasa has been used to signify an originary state of formlessness, against which discourses on the true nature of the human being can differentiate their position. The tabula rasa has operated less as a substantive position than as a whipping post. However, it will be noted that innovations in psychological theory over the past decade have begun to undermine such narratives by rendering unintelligible the idea of an 'originary' state of human nature

    Predicting collective behaviour at the Hajj: place, space, and the process of cooperation

    Get PDF
    Around 2 million pilgrims attend the annual Hajj to Mecca and the holy places, which are subject to dense crowding. Both architecture and psychology can be part of disaster risk reduction in relation to crowding, since both can affect the nature of collective behaviour – particularly cooperation – among pilgrims. To date, collective behaviour at the Hajj has not been systematically investigated from a psychological perspective. We examined determinants of cooperation in the Grand Mosque and plaza during the pilgrimage. A questionnaire survey of 1194 pilgrims found that the Mosque was perceived by pilgrims as one of the most crowded ritual locations. Being in the plaza (compared to the Mosque) predicted the extent of cooperation, though crowd density did not. Shared social identity with the crowd explained more of the variance than both location and density. We examined some of the process underlying cooperation. The link between shared social identity and giving support to others was stronger in the plaza than in the Mosque, and suggests the role of place and space in modulating processes of cooperation in crowds. These findings have implications for disaster risk reduction and for applications such as computer simulations of crowds in pilgrimage locations

    Parsimony versus reductionism: how can crowd psychology be introduced into computer simulation?

    Get PDF
    Computer simulations are increasingly being used to predict the behaviour of crowds. However, the models used are mainly based on video observations, not an understanding of human decision making. Theories of crowd psychology can elucidate the factors underpinning collective behaviour in human crowds. Yet, in contrast to psychology, computer science must rely upon mathematical formulations in order to implement algorithms and keep models manageable. Here we address the problems and possible solutions encountered when incorporating social psychological theories of collective behaviour in computer modelling. We identify that one primary issue is retaining parsimony in a model whilst avoiding reductionism by excluding necessary aspects of crowd psychology, such as the behaviour of groups. We propose cognitive heuristics as a potential avenue to create a parsimonious model that incorporates core concepts of collective behaviour derived from empirical research in crowd psychology

    From mindless masses to small groups: Conceptualizing collective behavior in crowd modeling.

    Get PDF
    Computer simulations are increasingly used to monitor and predict behavior at large crowd events, such as mass gatherings, festivals and evacuations. We critically examine the crowd modeling literature and call for future simulations of crowd behavior to be based more closely on findings from current social psychological research. A systematic review was conducted on the crowd modeling literature (N = 140 articles) to identify the assumptions about crowd behavior that modelers use in their simulations. Articles were coded according to the way in which crowd structure was modeled. It was found that 2 broad types are used: mass approaches and small group approaches. However, neither the mass nor the small group approaches can accurately simulate the large collective behavior that has been found in extensive empirical research on crowd events. We argue that to model crowd behavior realistically, simulations must use methods which allow crowd members to identify with each other, as suggested by self-categorization theory

    Anemia status, hemoglobin concentration and outcome after acute stroke: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the setting of an acute stroke, anemia has the potential to worsen brain ischemia, however, the relationship between the entire range of hemoglobin to long-term outcome is not well understood.</p> <p>Methods</p> <p>We examined the association between World Health Organization-defined admission anemia status (hemoglobin<13 in males, <12 g/dl in women) and hemoglobin concentration and 1-year outcome among 859 consecutive patients with acute stroke (ischemic or intracerebral hemorrhage).</p> <p>Results</p> <p>The mean baseline hemoglobin concentration was 13.8 ± 1.7 g/dl (range 8.1 - 18.7). WHO-defined anemia was present in 19% of patients among both women and men. After adjustment for differences in baseline characteristics, patients with admission anemia had an adjusted OR for all-cause death at 1-month of 1.90 (95% CI, 1.05 to 3.43) and at 1-year of 1.72 (95% CI, 1.00 to 2.93) and for the combined end-point of disability, nursing facility care or death of 2.09 (95% CI, 1.13 to 3.84) and 1.83 (95% CI, 1.02 to 3.27) respectively. The relationship between hemoglobin quartiles and all-cause death revealed a non-linear association with increased risk at extremes of both low and high concentrations. In logistic regression models developed to estimate the linear and quadratic relation between hemoglobin and outcomes of interest, each unit increment in hemoglobin squared was associated with increased adjusted odds of all-cause death [at 1-month 1.06 (1.01 to 1.12; p = 0.03); at 1-year 1.09 (1.04 to 1.15; p < 0.01)], confirming that extremes of both low and high levels of hemoglobin were associated with increased mortality.</p> <p>Conclusions</p> <p>WHO-defined anemia was common in both men and women among patients with acute stroke and predicted poor outcome. Moreover, the association between admission hemoglobin and mortality was not linear; risk for death increased at both extremes of hemoglobin.</p

    Developing "personality" taxonomies: Metatheoretical and methodological rationales underlying selection approaches, methods of data generation and reduction principles

    Get PDF
    Taxonomic "personality" models are widely used in research and applied fields. This article applies the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) to scrutinise the three methodological steps that are required for developing comprehensive “personality” taxonomies: 1) the approaches used to select the phenomena and events to be studied, 2) the methods used to generate data about the selected phenomena and events and 3) the reduction principles used to extract the “most important” individual-specific variations for constructing “personality” taxonomies. Analyses of some currently popular taxonomies reveal frequent mismatches between the researchers’ explicit and implicit metatheories about “personality” and the abilities of previous methodologies to capture the particular kinds of phenomena toward which they are targeted. Serious deficiencies that preclude scientific quantifications are identified in standardised questionnaires, psychology’s established standard method of investigation. These mismatches and deficiencies derive from the lack of an explicit formulation and critical reflection on the philosophical and metatheoretical assumptions being made by scientists and from the established practice of radically matching the methodological tools to researchers’ preconceived ideas and to pre-existing statistical theories rather than to the particular phenomena and individuals under study. These findings raise serious doubts about the ability of previous taxonomies to appropriately and comprehensively reflect the phenomena towards which they are targeted and the structures of individual-specificity occurring in them. The article elaborates and illustrates with empirical examples methodological principles that allow researchers to appropriately meet the metatheoretical requirements and that are suitable for comprehensively exploring individuals’ “personality”

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for the standard model Higgs boson at LEP

    Get PDF

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore