463 research outputs found
Measurement of the \nu_\mu charged current \pi^+ to quasi-elastic cross section ratio on mineral oil in a 0.8 GeV neutrino beam
Using high statistics samples of charged current interactions,
MiniBooNE reports a measurement of the single charged pion production to
quasi-elastic cross section ratio on mineral oil (CH), both with and
without corrections for hadron re-interactions in the target nucleus. The
result is provided as a function of neutrino energy in the range 0.4 GeV 2.4 GeV with 11% precision in the region of highest statistics. The
results are consistent with previous measurements and the prediction from
historical neutrino calculations.Comment: 4 pages, 2 figure
Measurement of Muon Neutrino Quasi-Elastic Scattering on Carbon
The observation of neutrino oscillations is clear evidence for physics beyond
the standard model. To make precise measurements of this phenomenon, neutrino
oscillation experiments, including MiniBooNE, require an accurate description
of neutrino charged current quasi-elastic (CCQE) cross sections to predict
signal samples. Using a high-statistics sample of muon neutrino CCQE events,
MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments,
accurately characterizes the CCQE events observed in a carbon-based detector.
The extracted parameters include an effective axial mass, M_A^eff = 1.23+/-0.20
GeV, that describes the four-momentum dependence of the axial-vector form
factor of the nucleon; and a Pauli-suppression parameter, kappa =
1.019+/-0.011. Such a modified Fermi gas model may also be used by future
accelerator-based experiments measuring neutrino oscillations on nuclear
targets.Comment: 5 pages, 3 figure
Pattern selection in the absolutely unstable regime as a nonlinear eigenvalue problem: Taylor vortices in axial flow
A unique pattern selection in the absolutely unstable regime of a driven,
nonlinear, open-flow system is analyzed: The spatiotemporal structures of
rotationally symmetric vortices that propagate downstream in the annulus of the
rotating Taylor-Couette system due to an externally imposed axial through-flow
are investigated for two different axial boundary conditions at the in- and
outlet. Unlike the stationary patterns in systems without through-flow the
spatiotemporal structures of propagating vortices are independent of parameter
history, initial conditions, and system's length. They do, however, depend on
the axial boundary conditions, the driving rate of the inner cylinder and the
through-flow rate. Our analysis of the amplitude equation shows that the
pattern selection can be described by a nonlinear eigenvalue problem with the
frequency being the eigenvalue. Approaching the border between absolute and
convective instability the eigenvalue problem becomes effectively linear and
the selection mechanism approaches that one of linear front propagation.
PACS:47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 15 pages (LateX-file), 8 figures (Postscript
The design, construction and performance of the MICE scintillating fibre trackers
This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 ElsevierCharged-particle tracking in the international Muon Ionisation Cooling Experiment (MICE) will be performed using two solenoidal spectrometers, each instrumented with a tracking detector based on diameter scintillating fibres. The design and construction of the trackers is described along with the quality-assurance procedures, photon-detection system, readout electronics, reconstruction and simulation software and the data-acquisition system. Finally, the performance of the MICE tracker, determined using cosmic rays, is presented.This work was supported by the Science and Technology Facilities Council under grant numbers PP/E003214/1, PP/E000479/1, PP/E000509/1, PP/E000444/1, and through SLAs with STFC-supported laboratories. This work was also supportedby the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Alliance, under contract No. DE-AC02-76CH03000 with the U.S. Department of Energy, and by the U.S. National Science Foundation under grants PHY-0301737,PHY-0521313, PHY-0758173 and PHY-0630052. The authors also acknowledge the support of the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan
Interim Design Report
The International Design Study for the Neutrino Factory (the IDS-NF) was
established by the community at the ninth "International Workshop on Neutrino
Factories, super-beams, and beta- beams" which was held in Okayama in August
2007. The IDS-NF mandate is to deliver the Reference Design Report (RDR) for
the facility on the timescale of 2012/13. In addition, the mandate for the
study [3] requires an Interim Design Report to be delivered midway through the
project as a step on the way to the RDR. This document, the IDR, has two
functions: it marks the point in the IDS-NF at which the emphasis turns to the
engineering studies required to deliver the RDR and it documents baseline
concepts for the accelerator complex, the neutrino detectors, and the
instrumentation systems. The IDS-NF is, in essence, a site-independent study.
Example sites, CERN, FNAL, and RAL, have been identified to allow site-specific
issues to be addressed in the cost analysis that will be presented in the RDR.
The choice of example sites should not be interpreted as implying a preferred
choice of site for the facility
Comparison of large-angle production of charged pions with incident protons on cylindrical long and short targets
The HARP collaboration has presented measurements of the double-differential
pi+/pi- production cross-section in the range of momentum 100 MeV/c <= p 800
MeV/c and angle 0.35 rad <= theta <= 2.15 rad with proton beams hitting thin
nuclear targets. In many applications the extrapolation to long targets is
necessary. In this paper the analysis of data taken with long (one interaction
length) solid cylindrical targets made of carbon, tantalum and lead is
presented. The data were taken with the large acceptance HARP detector in the
T9 beam line of the CERN PS. The secondary pions were produced by beams of
protons with momenta 5 GeV/c, 8 GeV/c and 12 GeV/c. The tracking and
identification of the produced particles were performed using a small-radius
cylindrical time projection chamber (TPC) placed inside a solenoidal magnet.
Incident protons were identified by an elaborate system of beam detectors.
Results are obtained for the double-differential yields per target nucleon d2
sigma / dp dtheta. The measurements are compared with predictions of the MARS
and GEANT4 Monte Carlo simulations.Comment: 43 pages, 20 figure
Direct Measurement of the Top Quark Mass at D0
We determine the top quark mass m_t using t-tbar pairs produced in the D0
detector by \sqrt{s} = 1.8 TeV p-pbar collisions in a 125 pb^-1 exposure at the
Fermilab Tevatron. We make a two constraint fit to m_t in t-tbar -> b W^+bbar
W^- final states with one W boson decaying to q-qbar and the other to e-nu or
mu-nu. Likelihood fits to the data yield m_t(l+jets) = 173.3 +- 5.6 (stat) +-
5.5 (syst) GeV/c^2. When this result is combined with an analysis of events in
which both W bosons decay into leptons, we obtain m_t = 172.1 +- 5.2 (stat) +-
4.9 (syst) GeV/c^2. An alternate analysis, using three constraint fits to fixed
top quark masses, gives m_t(l+jets) = 176.0 +- 7.9 (stat) +- 4.8 (syst)
GeV/C^2, consistent with the above result. Studies of kinematic distributions
of the top quark candidates are also presented.Comment: 43 pages, 53 figures, 33 tables. RevTeX. Submitted to Phys. Rev.
Absolute Momentum Calibration of the HARP TPC
In the HARP experiment the large-angle spectrometer is using a cylindrical
TPC as main tracking and particle identification detector. The momentum scale
of reconstructed tracks in the TPC is the most important systematic error for
the majority of kinematic bins used for the HARP measurements of the
double-differential production cross-section of charged pions in proton
interactions on nuclear targets at large angle. The HARP TPC operated with a
number of hardware shortfalls and operational mistakes. Thus it was important
to control and characterize its momentum calibration. While it was not possible
to enter a direct particle beam into the sensitive volume of the TPC to
calibrate the detector, a set of physical processes and detector properties
were exploited to achieve a precise calibration of the apparatus. In the
following we recall the main issues concerning the momentum measurement in the
HARP TPC, and describe the cross-checks made to validate the momentum scale. As
a conclusion, this analysis demonstrates that the measurement of momentum is
correct within the published precision of 3%.Comment: To be published by JINS
Measurement of neutrino-induced charged-current charged pion production cross sections on mineral oil at Eν∼1GeV
Using a high-statistics, high-purity sample of νμ-induced charged current, charged pion events in mineral oil (CH2), MiniBooNE reports a collection of interaction cross sections for this process. This includes measurements of the CCπ+ cross section as a function of neutrino energy, as well as flux-averaged single- and double-differential cross sections of the energy and direction of both the final-state muon and pion. In addition, each of the single-differential cross sections are extracted as a function of neutrino energy to decouple the shape of the MiniBooNE energy spectrum from the results. In many cases, these cross sections are the first time such quantities have been measured on a nuclear target and in the 1 GeV energy range. © 2011 American Physical Society
Measurement of the neutrino neutral-current elastic differential cross section on mineral oil at Eν∼1GeV
We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH 2) as a function of four-momentum transferred squared, Q2. It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass MA that provides a best fit for MA=1. 39±0.11 GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasielastic cross sections as a function of Q2 has been measured. Additionally, single protons with kinetic energies above 350 MeV can be distinguished from neutrons and multiple nucleon events. Using this marker, the strange quark contribution to the neutral-current axial vector form factor at Q2=0, Δs, is found to be Δs=0.08±0.26. © 2010 The American Physical Society
- …