814 research outputs found

    The Politics of Equal Justice

    Get PDF

    The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy's Central Black Hole: A Paradox of Youth

    Get PDF
    We have obtained the first detection of spectral absorption lines in one of the high-velocity stars in the vicinity of the Galaxy's central supermassive black hole. Both Brgamma (2.1661 micron) and He I (2.1126 micron) are seen in absorption in S0-2 with equivalent widths (2.8+-0.3 Ang & 1.7+-0.4 Ang) and an inferred stellar rotational velocity (220+-40 km/s) that are consistent with that of an O8-B0 dwarf, which suggests that it is a massive (~15 Msun), young (<10 Myr) main sequence star. This presents a major challenge to star formation theories, given the strong tidal forces that prevail over all distances reached by S0-2 in its current orbit (130 - 1900 AU) and the difficulty in migrating this star inward during its lifetime from further out where tidal forces should no longer preclude star formation. The radial velocity measurements (-510+-40 km/s) and our reported proper motions for S0-2 strongly constrain its orbit, providing a direct measure of the black hole mass of 4.1(+-0.6)x10^6(Ro/8kpc)^3 Msun. The Keplerian orbit parameters have uncertainities that are reduced by a factor of 2-3 compared to previously reported values and include, for the first time, an independent solution for the dynamical center; this location, while consistent with the nominal infrared position of Sgr A*, is localized to a factor of 5 more precisely (+-2 milli-arcsec). Furthermore, the ambiguity in the inclination of the orbit is resolved with the addition of the radial velocity measurement, indicating that the star is behind the black hole at the time of closest approach and counter-revolving against the Galaxy. With further radial velocity measurements in the next few years, the orbit of S0-2 will provide the most robust estimate of the distance to the Galactic Center.Comment: 14 pages, Latex, Accepted for Publication in ApJ Letter

    The two states of Sgr A* in the near-infrared: bright episodic flares on top of low-level continuous variability

    Full text link
    In this paper we examine properties of the variable source Sgr A* in the near-infrared (NIR) using a very extensive Ks-band data set from NACO/VLT observations taken 2004 to 2009. We investigate the variability of Sgr A* with two different photometric methods and analyze its flux distribution. We find Sgr A* is continuously emitting and continuously variable in the near-infrared, with some variability occurring on timescales as long as weeks. The flux distribution can be described by a lognormal distribution at low intrinsic fluxes (<~5 mJy, dereddened with A_{Ks}=2.5). The lognormal distribution has a median flux of approximately 1.1 mJy, but above 5 mJy the flux distribution is significantly flatter (high flux events are more common) than expected for the extrapolation of the lognormal distribution to high fluxes. We make a general identification of the low level emission above 5 mJy as flaring emission and of the low level emission as the quiescent state. We also report here the brightest Ks-band flare ever observed (from August 5th, 2008) which reached an intrinsic Ks-band flux of 27.5 mJy (m_{Ks}=13.5). This flare was a factor 27 increase over the median flux of Sgr A*, close to double the brightness of the star S2, and 40% brighter than the next brightest flare ever observed from Sgr~A*.Comment: 14 pages, 6 figures, accepted for publication in Ap

    Stellar Orbits Around the Galactic Center Black Hole

    Full text link
    We present new proper motion measurements and simultaneous orbital solutions for three newly identified (S0-16, S0-19, and S0-20) and four previously known (S0-1, S0-2, S0-4, and S0-5) stars at the Galactic Center. This analysis pinpoints the Galaxy's central dark mass to within +-1 milli-arcsec and, for the first time from orbital dynamics, limits its proper motion to 1.5+-0.5 mas/y, which is consistent with our derivation of the position of Sgr A* in the infrared reference frame (+-10 mas). The estimated central dark mass from orbital motions is 3.7 (+-0.2) x 10^6 (Ro/8kpc)^3 Mo; this is a more direct measure of mass than those obtained from velocity dispersion measurements, which are as much as a factor of two smaller. The smallest closest approach is achieved by S0-16, which confines the mass to within a radius of a mere 45 AU and increases the inferred dark mass density by four orders of magnitude compared to earlier analyses based on velocity and acceleration vectors, making the Milky Way the strongest existing case by far for a supermassive black hole at the center of any normal type galaxy. The stellar orbital properties suggest that the distributions of eccentricities and angular momentum vector and apoapse directions are consistent with those of an isotropic system. Therefore many of the mechanisms proposed for the formation of young stars in the vicinity of a supermassive black hole, such as formation from a pre-existing disk, are unlikely solutions for the Sgr A* cluster stars. Unfortunately, all existing alternative theories are also somewhat problematic. Understanding the apparent youth of stars in the Sgr A* cluster, as well as the more distant He I emission line stars, has now become one of the major outstanding issues in the study of the Galactic Center.Comment: Abridged abstract, 38 pages, 5 figures, ApJ accepte

    An evolving hot spot orbiting around Sgr A*

    Full text link
    Here we report on recent near-infrared observations of the Sgr A* counterpart associated with the super-massive ~ 4x10^6 M_sun black hole at the Galactic Center. We find that the May 2007 flare shows the highest sub-flare contrast observed until now, as well as evidence for variations in the profile of consecutive sub-flares. We modeled the flare profile variations according to the elongation and change of the shape of a spot due to differential rotation within the accretion disk.Comment: 7 pages, 5 figures, contribution for the conference "The Universe under the Microscope" (AHAR 2008), to be published in Journal of Physics: Conference Series by Institute of Physics Publishin

    Evidence for X-ray synchrotron emission from simultaneous mid-IR to X-ray observations of a strong Sgr A* flare

    Get PDF
    This paper reports measurements of Sgr A* made with NACO in L' -band (3.80 um), Ks-band (2.12 um) and H-band (1.66 um) and with VISIR in N-band (11.88 um) at the ESO VLT, as well as with XMM-Newton at X-ray (2-10 keV) wavelengths. On 4 April, 2007, a very bright flare was observed from Sgr A* simultaneously at L'-band and X-ray wavelengths. No emission was detected using VISIR. The resulting SED has a blue slope (beta > 0 for nuL_nu ~ nu^beta, consistent with nuL_nu ~ nu^0.4) between 12 micron and 3.8 micron. For the first time our high quality data allow a detailed comparison of infrared and X-ray light curves with a resolution of a few minutes. The IR and X-ray flares are simultaneous to within 3 minutes. However the IR flare lasts significantly longer than the X-ray flare (both before and after the X-ray peak) and prominent substructures in the 3.8 micron light curve are clearly not seen in the X-ray data. From the shortest timescale variations in the L'-band lightcurve we find that the flaring region must be no more than 1.2 R_S in size. The high X-ray to infrared flux ratio, blue nuL_nu slope MIR to L' -band, and the soft nuL_nu spectral index of the X-ray flare together place strong constraints on possible flare emission mechanisms. We find that it is quantitatively difficult to explain this bright X-ray flare with inverse Compton processes. A synchrotron emission scenario from an electron distribution with a cooling break is a more viable scenario.Comment: ApJ, 49 pages, 9 figure

    Overtly anaphoric control in type logical grammar

    Get PDF
    In this paper we analyse anaphoric pronouns in control sentences and we investigate the implications of these kinds of sentences in relation to the Propositional Theory versus Property Theory question. For these purposes, we invoke the categorial calculus with limited contraction, a conservative extension of Lambek calculus that builds contraction into the logical rules for a customized slash type-constructor.Peer ReviewedPostprint (author's final draft

    The extreme luminosity states of Sagittarius A*

    Full text link
    We discuss mm-wavelength radio, 2.2-11.8um NIR and 2-10 keV X-ray light curves of the super massive black hole (SMBH) counterpart of Sagittarius A* (SgrA*) near its lowest and highest observed luminosity states. The luminosity during the low state can be interpreted as synchrotron emission from a continuous or even spotted accretion disk. For the high luminosity state SSC emission from THz peaked source components can fully account for the flux density variations observed in the NIR and X-ray domain. We conclude that at near-infrared wavelengths the SSC mechanism is responsible for all emission from the lowest to the brightest flare from SgrA*. For the bright flare event of 4 April 2007 that was covered from the radio to the X-ray domain, the SSC model combined with adiabatic expansion can explain the related peak luminosities and different widths of the flare profiles obtained in the NIR and X-ray regime as well as the non detection in the radio domain.Comment: 18 pages, 13 figures, accepted by A&

    Simultaneous Multi-Wavelength Observations of Sgr A* during 2007 April 1-11

    Full text link
    We report the detection of variable emission from Sgr A* in almost all wavelength bands (i.e. centimeter, millimeter, submillimeter, near-IR and X-rays) during a multi-wavelength observing campaign. Three new moderate flares are detected simultaneously in both near-IR and X-ray bands. The ratio of X-ray to near-IR flux in the flares is consistent with inverse Compton scattering of near-IR photons by submillimeter emitting relativistic particles which follow scaling relations obtained from size measurements of Sgr A*. We also find that the flare statistics in near-IR wavelengths is consistent with the probability of flare emission being inversely proportional to the flux. At millimeter wavelengths, the presence of flare emission at 43 GHz (7mm) using VLBA with milli-arcsecond spatial resolution indicates the first direct evidence that hourly time scale flares are localized within the inner 30×\times70 Schwarzschild radii of Sgr A*. We also show several cross correlation plots between near-IR, millimeter and submillimeter light curves that collectively demonstrate the presence of time delays between the peaks of emission up to three hours. The evidence for time delays at millimeter and submillimeter wavelengths are consistent with the source of emission being optically thick initially followed by a transition to an optically thin regime. In particular, there is an intriguing correlation between the optically thin near-IR and X-ray flare and optically thick radio flare at 43 GHz that occurred on 2007 April 4. This would be the first evidence of a radio flare emission at 43 GHz delayed with respect to the near-IR and X-ray flare emission.Comment: replaced with revised version 57 pages, 28 figures, ApJ (in press

    Simultaneous NIR/sub-mm observation of flare emission from SgrA*

    Get PDF
    We report on a successful, simultaneous observation and modeling of the sub-millimeter to near-infrared flare emission of the Sgr A* counterpart associated with the super-massive black hole at the Galactic center. Our modeling is based on simultaneous observations that have been carried out on 03 June, 2008 using the NACO adaptive optics (AO) instrument at the ESO VLT and the LABOCA bolometer at the APEX telescope. Inspection and modeling of the light curves show that the sub-mm follows the NIR emission with a delay of 1.5+/-0.5 hours. We explain the flare emission delay by an adiabatic expansion of the source components.Comment: 12 pages, 9 figures, 3 tables, in press with A&
    corecore