228 research outputs found

    Biological processes and links to the physics

    Get PDF
    Analysis of the temporal and spatial variability of biological processes and identification of the main variables that drive the dynamic regime of marine ecosystems is complex. Correlation between physical variables and long-term changes in ecosystems has routinely been identified, but the specific mechanisms involved remain often unclear. Reasons for this could be various: the ecosystem can be very sensitive to the seasonal timing of the anomalous physical forcing; the ecosystem can be contemporaneously influenced by many physical variables and the ecosystem can generate intrinsic variability on climate time scales. Marine ecosystems are influenced by a variety of physical factors, e.g., light, temperature, transport, turbulence. Temperature has a fundamental forcing function in biology, with direct influences on rate processes of organisms and on the distribution of mobile species that have preferred temperature ranges. Light and transport also affect the physiology and distribution of marine organisms. Small-scale turbulence determines encounter between larval fish and their prey and additionally influences the probability of successful pursuit and ingestion. The impact of physical forcing variations on biological processes is studied through long-term observations, process studies, laboratory experiments, retrospective analysis of existing data sets and modelling. This manuscript reviews the diversity of physical influences on biological processes, marine organisms and ecosystems and their variety of responses to physical forcing with special emphasis on the dynamics of zooplankton and fish stocks

    Design of small molecule-responsive microRNAs based on structural requirements for Drosha processing

    Get PDF
    MicroRNAs (miRNAs) are prevalent regulatory RNAs that mediate gene silencing and play key roles in diverse cellular processes. While synthetic RNA-based regulatory systems that integrate regulatory and sensing functions have been demonstrated, the lack of detail on miRNA structure–function relationships has limited the development of integrated control systems based on miRNA silencing. Using an elucidated relationship between Drosha processing and the single-stranded nature of the miRNA basal segments, we developed a strategy for designing ligand-responsive miRNAs. We demonstrate that ligand binding to an aptamer integrated into the miRNA basal segments inhibits Drosha processing, resulting in titratable control over gene silencing. The generality of this control strategy was shown for three aptamer–small molecule ligand pairs. The platform can be extended to the design of synthetic miRNAs clusters, cis-acting miRNAs and self-targeting miRNAs that act both in cis and trans, enabling fine-tuning of the regulatory strength and dynamics. The ability of our ligand-responsive miRNA platform to respond to user-defined inputs, undergo regulatory performance tuning and display scalable combinatorial control schemes will help advance applications in biological research and applied medicine

    International Bottom Trawl Survey Working Group (IBTSWG). ICES Scientific Reports, 04:65

    Get PDF
    The International Bottom Trawl Survey Working Group (IBTSWG) coordinates fishery-independent bottom trawl surveys in the ICES area in the Northeast Atlantic and the North Sea. These long-term monitoring surveys provide data for stock assessments and facilitate examina-tion of changes in fish distribution and relative abundance. The group also promotes the stand-ardization of fishing gears and methods as well as survey coordination. This report summarizes the national contributions in 2021–2022 and plans for the 2022–2023 surveys coordinated by IBTSWG

    Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression

    Get PDF
    [EN] Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA-RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits.EVOPROG [FP7-ICT-610730]; PROMYS [FP7-KBBE-613745 to A.J.]; Ministerio de Economia y Competitividad, Spain [BIO2011-26741 to J.-A.D.]; PRES Paris Sud grant (S.S.); EMBO long-term fellowship co-funded by Marie Curie actions [ALTF-1177-2011 A.J., G.R.]; AXA research fund; Ministerio de Educacion, Cultura y Deporte, Spain [AP2012-3751 to E.M.]. Funding for open access charge: EVOPROG [FP7-ICT-610730]; PROMYS [FP7-KBBE-613745].Shen, S.; Rodrigo Tarrega, G.; Prakash, S.; Majer, E.; Landrain, T.; Kirov, B.; Daros Arnau, JA.... (2015). Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression. Nucleic Acids Research. 43(10):5158-5170. https://doi.org/10.1093/nar/gkv287S515851704310Ulrich, L. E., Koonin, E. V., & Zhulin, I. B. (2005). One-component systems dominate signal transduction in prokaryotes. Trends in Microbiology, 13(2), 52-56. doi:10.1016/j.tim.2004.12.006Kiel, C., Yus, E., & Serrano, L. (2010). Engineering Signal Transduction Pathways. Cell, 140(1), 33-47. doi:10.1016/j.cell.2009.12.028Isaacs, F. J., Dwyer, D. J., & Collins, J. J. (2006). RNA synthetic biology. Nature Biotechnology, 24(5), 545-554. doi:10.1038/nbt1208Liang, J. C., Bloom, R. J., & Smolke, C. D. (2011). Engineering Biological Systems with Synthetic RNA Molecules. Molecular Cell, 43(6), 915-926. doi:10.1016/j.molcel.2011.08.023Dueber, J. E. (2003). Reprogramming Control of an Allosteric Signaling Switch Through Modular Recombination. Science, 301(5641), 1904-1908. doi:10.1126/science.1085945Sallee, N. A., Yeh, B. J., & Lim, W. A. (2007). Engineering Modular Protein Interaction Switches by Sequence Overlap. Journal of the American Chemical Society, 129(15), 4606-4611. doi:10.1021/ja0672728Rodrigo, G., Landrain, T. E., Shen, S., & Jaramillo, A. (2013). A new frontier in synthetic biology: automated design of small RNA devices in bacteria. Trends in Genetics, 29(9), 529-536. doi:10.1016/j.tig.2013.06.005Callura, J. M., Dwyer, D. J., Isaacs, F. J., Cantor, C. R., & Collins, J. J. (2010). Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proceedings of the National Academy of Sciences, 107(36), 15898-15903. doi:10.1073/pnas.1009747107Callura, J. M., Cantor, C. R., & Collins, J. J. (2012). Genetic switchboard for synthetic biology applications. Proceedings of the National Academy of Sciences, 109(15), 5850-5855. doi:10.1073/pnas.1203808109Werstuck, G. (1998). Controlling Gene Expression in Living Cells Through Small Molecule-RNA Interactions. Science, 282(5387), 296-298. doi:10.1126/science.282.5387.296Wieland, M., & Hartig, J. S. (2008). Improved Aptazyme Design and In Vivo Screening Enable Riboswitching in Bacteria. Angewandte Chemie International Edition, 47(14), 2604-2607. doi:10.1002/anie.200703700Win, M. N., & Smolke, C. D. (2007). A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proceedings of the National Academy of Sciences, 104(36), 14283-14288. doi:10.1073/pnas.0703961104Klauser, B., & Hartig, J. S. (2013). An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Research, 41(10), 5542-5552. doi:10.1093/nar/gkt253Bayer, T. S., & Smolke, C. D. (2005). Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nature Biotechnology, 23(3), 337-343. doi:10.1038/nbt1069Qi, L., Lucks, J. B., Liu, C. C., Mutalik, V. K., & Arkin, A. P. (2012). Engineering naturally occurring trans -acting non-coding RNAs to sense molecular signals. Nucleic Acids Research, 40(12), 5775-5786. doi:10.1093/nar/gks168Looger, L. L., Dwyer, M. A., Smith, J. J., & Hellinga, H. W. (2003). Computational design of receptor and sensor proteins with novel functions. Nature, 423(6936), 185-190. doi:10.1038/nature01556Kortemme, T., & Baker, D. (2004). Computational design of protein–protein interactions. Current Opinion in Chemical Biology, 8(1), 91-97. doi:10.1016/j.cbpa.2003.12.008Rodrigo, G., Landrain, T. E., & Jaramillo, A. (2012). De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proceedings of the National Academy of Sciences, 109(38), 15271-15276. doi:10.1073/pnas.1203831109Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D., Cantor, C. R., & Collins, J. J. (2004). Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, 22(7), 841-847. doi:10.1038/nbt986Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., & Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte f�r Chemie Chemical Monthly, 125(2), 167-188. doi:10.1007/bf00818163Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2005). Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 24(1), 79-88. doi:10.1038/nbt1172Hersch, G. L., Baker, T. A., & Sauer, R. T. (2004). SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags. Proceedings of the National Academy of Sciences, 101(33), 12136-12141. doi:10.1073/pnas.0404733101Rodrigo, G., Kirov, B., Shen, S., & Jaramillo, A. (2013). Theoretical and experimental analysis of the forced LacI-AraC oscillator with a minimal gene regulatory model. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(2), 025109. doi:10.1063/1.4809786Danino, T., Mondragón-Palomino, O., Tsimring, L., & Hasty, J. (2010). A synchronized quorum of genetic clocks. Nature, 463(7279), 326-330. doi:10.1038/nature08753Mathews, D. H., Sabina, J., Zuker, M., & Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 288(5), 911-940. doi:10.1006/jmbi.1999.2700Paige, J. S., Nguyen-Duc, T., Song, W., & Jaffrey, S. R. (2012). Fluorescence Imaging of Cellular Metabolites with RNA. Science, 335(6073), 1194-1194. doi:10.1126/science.1218298Chen, X., & Ellington, A. D. (2009). Design Principles for Ligand-Sensing, Conformation-Switching Ribozymes. PLoS Computational Biology, 5(12), e1000620. doi:10.1371/journal.pcbi.1000620Quarta, G., Sin, K., & Schlick, T. (2012). Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function. PLoS Computational Biology, 8(2), e1002368. doi:10.1371/journal.pcbi.1002368Freeman, J. B., & Dale, R. (2012). Assessing bimodality to detect the presence of a dual cognitive process. Behavior Research Methods, 45(1), 83-97. doi:10.3758/s13428-012-0225-xWieland, M., Benz, A., Klauser, B., & Hartig, J. S. (2009). Artificial Ribozyme Switches Containing Natural Riboswitch Aptamer Domains. Angewandte Chemie International Edition, 48(15), 2715-2718. doi:10.1002/anie.200805311Penchovsky, R., & Breaker, R. R. (2005). Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nature Biotechnology, 23(11), 1424-1433. doi:10.1038/nbt1155Chushak, Y., & Stone, M. O. (2009). In silico selection of RNA aptamers. Nucleic Acids Research, 37(12), e87-e87. doi:10.1093/nar/gkp408Bartel, D., & Szostak, J. (1993). Isolation of new ribozymes from a large pool of random sequences [see comment]. Science, 261(5127), 1411-1418. doi:10.1126/science.7690155Lutz, R. (1997). Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Research, 25(6), 1203-1210. doi:10.1093/nar/25.6.1203Mutalik, V. K., Qi, L., Guimaraes, J. C., Lucks, J. B., & Arkin, A. P. (2012). Rationally designed families of orthogonal RNA regulators of translation. Nature Chemical Biology, 8(5), 447-454. doi:10.1038/nchembio.919Bennett, M. R., & Hasty, J. (2009). Microfluidic devices for measuring gene network dynamics in single cells. Nature Reviews Genetics, 10(9), 628-638. doi:10.1038/nrg2625Cookson, N. A., Mather, W. H., Danino, T., Mondragón‐Palomino, O., Williams, R. J., Tsimring, L. S., & Hasty, J. (2011). Queueing up for enzymatic processing: correlated signaling through coupled degradation. Molecular Systems Biology, 7(1), 561. doi:10.1038/msb.2011.94Hermann, T. (2000). Adaptive Recognition by Nucleic Acid Aptamers. Science, 287(5454), 820-825. doi:10.1126/science.287.5454.820Lou, C., Stanton, B., Chen, Y.-J., Munsky, B., & Voigt, C. A. (2012). Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nature Biotechnology, 30(11), 1137-1142. doi:10.1038/nbt.2401Qi, L., Haurwitz, R. E., Shao, W., Doudna, J. A., & Arkin, A. P. (2012). RNA processing enables predictable programming of gene expression. Nature Biotechnology, 30(10), 1002-1006. doi:10.1038/nbt.2355Liu, C. C., Qi, L., Lucks, J. B., Segall-Shapiro, T. H., Wang, D., Mutalik, V. K., & Arkin, A. P. (2012). An adaptor from translational to transcriptional control enables predictable assembly of complex regulation. Nature Methods, 9(11), 1088-1094. doi:10.1038/nmeth.2184Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell, 152(5), 1173-1183. doi:10.1016/j.cell.2013.02.022Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., … Qi, L. S. (2013). CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell, 154(2), 442-451. doi:10.1016/j.cell.2013.06.044Bashor, C. J., Horwitz, A. A., Peisajovich, S. G., & Lim, W. A. (2010). Rewiring Cells: Synthetic Biology as a Tool to Interrogate the Organizational Principles of Living Systems. Annual Review of Biophysics, 39(1), 515-537. doi:10.1146/annurev.biophys.050708.133652Yen, L., Svendsen, J., Lee, J.-S., Gray, J. T., Magnier, M., Baba, T., … Mulligan, R. C. (2004). Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature, 431(7007), 471-476. doi:10.1038/nature0284

    Kinase Activity Profiling of Pneumococcal Pneumonia

    Get PDF
    Background: Pneumonia represents a major health burden. Previous work demonstrated that although the induction of inflammation is important for adequate host defense against pneumonia, an inability to regulate the host's inflammatory response within the lung later during infection can be detrimental. Intracellular signaling pathways commonly rely on activation of kinases, and kinases play an essential role in the regulation of the inflammatory response of immune cells. Methodology/Principal Findings: Pneumonia was induced in mice via intranasal instillation of Streptococcus (S.) pneumoniae. Kinomics peptide arrays, exhibiting 1024 specific consensus sequences for protein kinases, were used to produce a systems biology analysis of cellular kinase activity during the course of pneumonia. Several differences in kinase activity revealed by the arrays were validated in lung homogenates of individual mice using western blot. We identified cascades of activated kinases showing that chemotoxic stress and a T helper 1 response were induced during the course of pneumococcal pneumonia. In addition, our data point to a reduction in WNT activity in lungs of S. pneumoniae infected mice. Moreover, this study demonstrated a reduction in overall CDK activity implying alterations in cell cycle biology. Conclusions/Significance: This s

    X-chromosome and kidney function:evidence from a multi-trait genetic analysis of 908,697 individuals reveals sex-specific and sex-differential findings in genes regulated by androgen response elements

    Get PDF
    X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.</p
    corecore