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Abstract We present a novel architecture to develop Virtual
Environments (VEs) for multicore CPU systems. An object-
centric method provides a uniform representation of VEs.
The representation enables VEs to be processed in parallel
using a multistage, dual-frame pipeline. Dynamic work dis-
tribution and load balancing is accomplished using a thread
migration strategy with minimal overhead. This paper de-
scribes our approach, and shows it is efficient and scal-
able with performance experiments. Near linear speed-ups
have been observed in experiments involving up to 1,000
deformable objects on a six-core i7 CPU. This approach’s
practicality is demonstrated with the development of a med-
ical simulation trainer for a craniotomy procedure.

Keywords Parallel virtual environment · Physics
simulation · Multicore processors · Medical simulation

1 Introduction

Interactive computer-based virtual environments (VEs) have
applications ranging from entertainment to medical simu-
lation. Detecting interactions (e.g., collision and response)
and computing updates are central requirements. To improve
realism, interactions and updates can use physically-based
models. However, computational requirements grow quickly
as VEs become complex. For example, VEs used in surgical
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simulation incorporate inhomogeneous biomechanical tis-
sue and physiological models. Haptic and visual responses
to user interactions occur in real-time. The high degree of
complexity and need for real-time updates can be challeng-
ing for single-threaded implementations.

Parallelization can provide a solution. Several works have
focused on parallelizing specific aspects, such as collision
detection [13, 21, 39, 44, 46], physical model updating [25,
29, 39], and rendering [11, 20, 22, 28, 30, 38, 45]. Other
approaches provide a broader framework to define a VE and
parallelize its workload [4, 10, 18, 19, 36, 40, 41].

The widespread availability of computers with multi-core
processors are a recent development. Cores reside on a com-
mon die, but each core functions as a distinct processor.
Large shared cache designs help alleviate memory bottle-
necks. Configurations up to eight cores are available at mod-
erate cost.

This paper describes a novel architecture to develop Vir-
tual Environments (VEs) for multicore CPU systems. We
note that the work performed in many VEs can be decom-
posed into three distinct phases: interaction, update, and ren-
dering. These phases occur in sequence, and repeat for the
duration of the VE. With this observation, we propose an
object-centric approach to defining a VE. All elements of a
VE are represented by objects. An object is defined by its
response to each phase, and by its internal data structures.
This uniform representation permits a VE to be executed
by a multithreaded pipeline. Threads adopt a decentralized
migration strategy to process work within the pipeline. No
work scheduler is required. In contrast to many existing par-
allel VE works, our approach does not depend on work-
stealing [18, 19] or run-time heuristics [40] to achieve dy-
namic load balancing. Thread utilization is further increased
by processing up to two consecutive frames in the pipeline
simultaneously.
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The results of several performance experiments are pro-
vided. A VE with varying complexity is used to evaluate the
scalability and load balancing of the architecture under var-
ious conditions. A head-trauma simulator, which includes
real-time deformable tissues and different model types, pro-
vides a real world application of the architecture. Results
show that the architecture scales efficiently with the num-
ber of CPU cores. Near-linear speedups can be achieved
with relatively low overhead. We compare our approach
with established parallel VEs methods. They include Intel
TBB [23], Cilk Plus [24], and OpenMP [35] parallel frame-
works. The experimental results show our architecture pro-
vides greater speedups.

The remainder of the paper is as follows. Section 2 re-
views related work. Section 3 illustrates how physically-
based VEs can be described using a common framework.
Section 4 describes our implementation of the VE frame-
work. The VE execution pipeline is detailed in Sect. 5. An
application development overview is given in Sect. 6. Sec-
tion 7 describes performance experiments, with results given
in Sect. 8. The paper is discussed in Sect. 9 and then con-
cluded in Sect. 10.

2 Related work

In this section, we review parallel VE methods. Some
early parallel VE designs resulted in application-specific
approaches. For example, Agus et al. developed a parallel
solution for simulating temporal bone surgery [3]. A static
work partitioning strategy is adopted. Task-specific threads
compute interactions, update, and render the VE.

Many works focus on parallelizing specific aspects of a
VE, such as collision detection, physical model updating,
and rendering. Collision detection has been parallelized in
various ways. Figueiredo et al. rely on OpenMP [35] to par-
allelize loops that compute overlapping axis-aligned bound-
ing boxes and surface intersections [13]. Wieland et al. use
a quad tree to group potentially colliding objects, and then
assign groups to threads to perform intersection tests [44].
Zhao et al. build a hybrid bounding box/sphere hierarchy
and relying on OpenMP to parallelize the traversal of the hi-
erarchy for collision testing [46]. Huagen et al. construct a
hybrid bounding volume hierarchical representation of ob-
jects and accelerate collision detection by traversing the hi-
erarchy in parallel [21].

A number of approaches have been described to com-
pute model deformations in parallel. For example, Mont-
gomery et al. parallelize mass–spring simulations [29]. Par-
allel linear and corotational finite element methods are also
described [25]. Many recent works, such as [12], focus on
using the GPU as a parallel processor for computing de-
formations. Thomaszewski et al. describe parallel methods

for collision detection and time integration for physics sim-
ulation [39]. For collision detection, traversal of a bounding
volume hierarchy creates tasks for threads. Collision infor-
mation from a previous frame estimates work for the current
frame to guide task granularity. Thread creation overhead is
reduced by avoiding creating tasks whose grain size is too
fine. A parallel time integration algorithm is also described.
Additional parallelism is achieved via domain decomposi-
tion, by breaking up the geometry into different parts and
assigning each part to a different thread.

Parallel rendering methods have also been explored.
Some are domain-specific such as volume rendering [20, 38,
45]. Others focus on dedicated hardware solutions [28, 30].
More general parallel rendering solutions have also been
created [11, 22].

In contrast to focusing on specific aspects, other meth-
ods provide a more generalized parallel VE framework.
OpenScenegraph is a toolkit for developing VEs using
a scene graph representation [36]. Multithreading within
OpenScenegraph is heavily optimized to facilitate rendering
and scene graph operations. OpenScenegraph only supports
single-threaded updates since it would require synchroniza-
tion on most scene graph operations, resulting in significant
performance loss [37].

Voß et al. describe a framework to support multi-threaded
updating in scene graphs [41]. Data is replicated whenever
threads need to modify the data. Modified values are tracked
to synchronize the copies. The method is extended for clus-
ter support, by generating network messages from the mod-
ified data to synchronize other scene graph copies. While
this method allows for updating with multiple threads, data
replication and synchronization can be an issue since each
thread can have its own copy of the data.

Allard et al. describe a parallel VE framework for
physically-based VEs [4]. The underlying data flow model,
provided by a FlowVR distributed VE middle-ware [5], is
based on message passing between filters and modules. Par-
allelism is achieved by statically assigning modules to run
one per processor (or host as a distributed VE). In some
cases, such as fluid simulation, modules cannot simply be
distributed to hosts so they rely on MPI [17] to run the mod-
ules on several processors. The data-flow model makes it
possible to couple different physically-based simulations,
but does not work well with “tightly coupled simulation al-
gorithms” [4].

DLoVe provides a method for developing parallel appli-
cations that are distributed over several machines [10]. Re-
lationships between objects are defined using a constraint
graph. Changes are propagated through the graph’s links
to ensure all relationships are satisfied. Worker executables
are responsible for keeping assigned parts of the constraint
graph up-to-date. At compile-time, DLoVe’s partition algo-
rithm determines how to partition the graph by assuming all
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links are equally computationally expensive. Tasks, corre-
sponding to a set of interconnected links, are assigned to the
workers. A greedy round-robin scheduling algorithm tries
to provide some limited load balancing as work is statically
assigned to workers.

Vo et al. [40] describe a method to parallelize visualiza-
tion pipelines. The method is built on top of the Visualiza-
tion Toolkit [42]. A scheduler thread builds a dependency
graph from modules and generates a priority queue for ex-
ecution. A secondary scheduler thread decides which mod-
ules to process and allocates threads for execution. The num-
ber of threads is based on a heuristic strategy, which collects
accumulated computation run-times for modules.

Hermann et al. describe a method for dynamic load bal-
ancing for the time integration step of physics simulations
[18]. The method relies on a KAAPI middleware [15] to
parallelize the Sofa framework [6]. Prior to running a simu-
lation step, a data dependency graph between tasks is gener-
ated. The graph is used to statically partition tasks and map
them onto processors. The processors execute tasks in paral-
lel, and can suspend execution if required to respect data de-
pendencies (synchronization). KAAPI’s work-stealing can
redistribute tasks if required for load balancing. In [18],
KAAPI’s static scheduling algorithm is modified to reuse
a previous simulation step’s graph. However, a new graph
must be created when new collisions occur. The cost of gen-
erating another task graph is proportional to the number of
contacts in the scene. Load balancing can be performed ex-
plicitly at the object-level by moving a computationally ex-
pensive object to an idle processor.

In [19], Hermann et al. expand their work to allow use
of GPUs and CPUs to execute the time integration step for
physics simulations. A task graph is used to guide static
work partitioning based on grouping interacting objects.
During a “warm-up” phase, CPU and GPU implementations
are run to collect performance timing data. The timing data
is used to select which processing unit (PU) to use during
work-stealing. Work stealing is guided to favor gathering in-
teracting objects on the same PU. An ordered list of tasks
(partition) is assigned an affinity list of PUs. A PU can steal
work if it is in the partition’s affinity list. Although limited
to the time integration step, the use of mixed GPU and CPU
implementations is interesting since it assists in selecting the
PU. Similar to [18], the work stealing is affected by changes
in collisions due to the increasing number of steals required
for load balancing. A new task graph must be recomputed
with the addition/removal of object collisions. Work steal-
ing overhead can also increase when expensive CPU–GPU–
CPU transfers are triggered, so an attempt is made to mini-
mize this case.

To date, parallel VE implementations tend to be proces-
sor-centric. They often rely on a scheduler to assign work to
processors. Static work scheduling can help reduce synchro-
nization overhead. Greater speedups may be possible with

dynamic work redistribution, at the expense of increased
overhead.

Our implementation provides an object-centric VE rep-
resentation. In the next section, we describe a framework
for VEs. The framework suggests how a VE may be ab-
stracted as a set of objects. These objects are structured to
facilitate parallel processing in a uniform manner. We later
describe a method to dynamically distribute and process VE
work without a scheduler. Load balancing is automatically
achieved, while still maintaining low synchronization over-
head. Additional parallelism is possible by allowing work
from up to two consecutive simulation frames to be pro-
cessed at the same time.

3 VE framework

A VE is defined by the manner in which its elements are
modeled and executed. Physically-based VEs consist of var-
ious elements that need to be modeled at the geometrical and
physical level; see Fig. 1. Geometrical modeling describes
the element’s shape, topology, and visual appearance. Phys-
ical modeling defines the algorithms and properties neces-
sary to model behaviors and interactions between elements.

Once a VE is modeled, it is executed at rates adequate for
interaction and visualization. During execution, an element
may be in one of three states: interaction, update, and ren-
dering. These states occur in sequence. In some elements,
one or more states can be trivially defined.

Interaction occurs when an element exerts a change on
another element. Examples of element-element interaction
include collision, selection, and manipulation. Algorithms
required to compute modeled VE interactions are domain-
specific. Collision detection algorithms identify when and
where elements interact with each other. Once identified, a
collision response algorithm determines the appropriate ac-
tion (e.g., force calculation). The result is applied to the ele-
ments for updating.

An element can respond to interactions in different ways.
For example, a collision can cause the element to deform. It
can cause the element to change its visual appearance (e.g.,
brighten). Manipulating the element can cause changes in
geometry. The VE needs to be updated to reflect changes
over time, including changes resulting from interactions or
device input. Physically-based equations that model ele-
ments’ behavior must be computed. An elements’s transfor-
mations and/or geometrical data are updated if modified. El-
ements representing I/O devices sample new input data to
reflect the current device state.

Finally, rendering algorithms are required to provide vi-
sual, tactile, or other sensory feedback from each element
in its current state. For example, an element’s geometrical
representation and visual properties are used to generate an
image for the user.



E. Acosta, A. Liu

Fig. 1 Typical phases of a physically-based VE. A VE is first modeled, and then executed to simulate and render it

Fig. 2 Modular 3D Object can
be used to model different VEs

Given this framework, we propose that a VE can be mod-
eled as a set of elements. Each element is represented by an
object. An object is defined by its response to each state,
and by its internal data structures. With this organization, a
pipeline can be used to implement the execution. The fol-
lowing section describes our approach.

4 Framework implementation

This section describes our implementation of the frame-
work. The structure of a VE object is discussed. The pipeline
architecture is presented, and its concept of operation is
highlighted.

4.1 VE object structure

A VE object is defined by its data and algorithms for han-
dling each of the three states: interaction, update, and ren-
dering.

3D Object serves as a container that allows VE objects to
be constructed by plugging in different combinations of vi-
sual properties, geometry, behavior manager (callback), and
graphics renderer (callback) modules; see Fig. 2.

Visual properties (e.g., color material and/or texture
maps) help model an object’s appearance.

The geometry module holds the geometrical representa-
tion(s) (e.g., polygons, voxels, etc.) that defines the object’s
shape and topology.

The behavior manager contains the algorithm(s) respon-
sible for updating an object’s state. An object’s state is up-
dated based on interaction data (e.g. forces) and the object’s
physical behavior. If the object represents an I/O device (e.g.
haptic device) the new input data is sampled by the behavior
manager, and the object is updated based on the input. This
device interfacing method allows all objects to be treated
identically by the pipeline. Support for haptic devices is de-
tailed in Sect. 6.3.

The graphics renderer defines the graphical rendering al-
gorithm that will be used to display the object.

An interaction pair specifies algorithms that model the
interaction between two objects. Interactions are defined by
plugging in collision detection and collision response algo-
rithms, Fig. 3. Another module stores collision results, and
serves as the input to the collision response algorithm. Only
object interactions of interest need to be modeled.

4.2 VE execution pipeline overview

Section 3 outlined the generalized steps required to execute
a VE. Since VE task execution is order dependent (e.g. col-
lision response after collision detection), the tasks can be
treated as a pipeline (see Fig. 4). Object interactions are
identified by Collision Detection, and their results applied
to objects in Collision Response. Objects are then updated
based on interactions and their defined behavior in Object
Update. Object Render provides visual feedback from the
objects.
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Fig. 3 Pair-wise interactions
modeled for parallel processing

Fig. 4 VE execution tasks as a
pipeline

Fig. 5 Simplified parallelization of the VE execution pipeline

Figure 5 provides a simplified parallelization of the pipe-
line. Parallelization is achieved through multiple threads.
Each thread corresponds to a CPU core dedicated to the
VE. The pipeline threads are generalized and can process
any pipeline stage. The generalization is made possible us-
ing a callback mechanism (Sect. 5.2) to trigger application-
specific behavior.

The 3D Objects and interaction pairs used to define a VE
are directly translated into work units for the pipeline. An
interaction pair serves as the input into the Collision Detec-
tion stage. Results of collision tests (in the interaction pair)
are then passed into the Collision Response stage for pro-
cessing. Collision Response computes interaction data that
is passed to the 3D Objects in the interaction pair for updat-
ing. The point between the Collision Response and Object
Update stages may require synchronization and is covered
in Sect. 5.4. Once an object is updated, it can be rendered.

Work units are passed between stages using queues that
are thread-safe. The queues handle synchronization when
adding and removing elements. Critical sections are used
to synchronize queue access since they are relatively light
weight locks [31]. To reduce synchronization, a carry-over
strategy is utilized when possible. A carry-over occurs when
a thread bypasses a queue and directly carries a work unit to
the next stage. Bypassing queues allows work to be moved
down the pipeline without any synchronization. If a stage
produces more than one work unit, one unit is carried over

and the additional units are placed on a queue. For example,
both objects in an interaction pair may be ready to be up-
dated after collision response. One object would be carried
over, while the other is placed in the object update queue.

A migration algorithm controls how threads transition
between stages. The algorithm enables threads to (1) pro-
cess work from its current stage, (2) follow work down the
pipeline, and (3) move up/down the pipeline in search of
work. Section 5.3 describes the migration algorithm in more
detail. This strategy is simple, and has minimal synchro-
nization overhead. Threads converge on pipeline stages with
queued work. Dynamic load distribution is automatic. As
demonstrated in Sect. 8, our approach is efficient and scales
well across varying workloads, number of objects, and CPU
threads.

5 VE execution pipeline

5.1 VE pipeline

Section 4 provided a conceptual description of the pipeline
and thread migration strategy. This section discusses opti-
mizations that further improve performance. The resulting
pipeline is given in Fig. 6.

The Collision Detection and Collision Response queues
can grow rapidly with the number of objects. Moreover, a
positive collision always increases the Collision Response
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Fig. 6 The dual-frame VE execution pipeline

queue. This results in significant synchronization overhead
as threads tend to cluster around the first two stages. As
an optimization, collision detection and response were com-
bined into a single interaction stage. To prune non colliding
objects, a Broad Phase Collision Detection stage was intro-
duced. The full implementation in Fig. 6 consists of four
stages.

An Object Ready queue holds the set of objects that are
ready to be processed by the pipeline. The Broad Phase Col-
lision Detection stage quickly eliminates non-colliding ob-
jects using bounding volume tests. Only interaction pairs for
the potentially colliding set (PCS) of objects are placed into
the Collision Detection queue for exact collision testing. To
further optimize work unit flow within the pipeline, 3D ob-
jects that are eliminated from the PCS are placed directly
into the Object Update stage from the Broad Phase Colli-
sion Detection stage.

The next object interaction stage performs collision de-
tection and response between objects specified in an inter-
action pair. Collision response is only triggered if a collision
occurs. The semantics of a collision is interaction depen-
dent. For example, a collision can be two objects intersect-
ing or simply a condition that is set to trigger a response.

Objects specified in the interaction pair are passed to the
Object Update stage if they are ready to be updated. Sec-
tion 5.4 describes a synchronization constraint that deter-
mines if objects can be updated.

Once updated, an object is passed to the Object Render
stage for visual rendering. Lastly, the object is placed back
in the Object Ready queue to process for the next frame.
Objects with no interactions can bypass the first two stages
so they are directly inserted into Object Update instead.

In the current design, all pipeline stages can run in par-
allel. However, we found that the NVidia GPUs available in
our lab (GeForce 8800, 9800 GX2, GTX 480, and Quadro

5000) do not handle multithreaded OpenGL rendering well
on a Windows XP or Windows 7 64-bit platform. The best
performance results when one thread executes the Object
Render stage. Therefore, any number of threads can ex-
ecute the first three pipeline stages simultaneously. Only
one thread currently executes object rendering in parallel
to the other three stages. Section 5.3 describes a token sys-
tem that enforces this constraint. This issue is discussed fur-
ther in Sect. 9. Once a multithreaded rendering solution is
found, the token system can be used to control the number
of threads that can render in parallel.

Performance is further improved by allowing up to two
consecutive frames to be processed within the pipeline. This
strategy can significantly increase the time that all threads
are active. Consecutive VE frame processing is described in
Sect. 5.5.

5.2 Callback mechanism

The architecture’s pipeline employs a callback mechanism
to model application specific behavior for each pipeline
stage. The callback mechanism is able to implement domain-
specific behavior used to model a VE (objects and interac-
tions), while keeping the pipeline problem domain indepen-
dent.

Each stage triggers a callback corresponding to its task,
as shown in Fig. 6. The Collision Detection and Response
stage triggers the algorithm modules within an interaction
pair. The Object Update stage calls a 3D Object’s update
callback, which triggers its behavior manager to update the
object. Similarly, the Object Render stage calls the 3D Ob-
ject’s render callback to execute its graphics renderer.

Figure 7 provides an example sequence diagram of the
callback mechanism for the Object Update stage. The ex-
ample is kept at a high-level for simplicity. In this exam-
ple, a mass–spring object needs to be updated. The pipeline
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Fig. 7 Example callback sequence for mass–spring update

thread that is processing the Object Update stage triggers
the 3D Object’s update callback. In turn, the 3D Object trig-
gers its behavior manager to update. The behavior manager
acquires the geometry from the 3D Object in order to up-
date the mass–spring forces and update the nodes’ position
via integration. Finally, the behavior manager synchronizes
the 3D Object’s triangle mesh geometry to update the new
vertex positions and surface normals for visual rendering.

5.3 Thread migration algorithm

Each pipeline thread is designed as a generic worker that
can process any stage based on where work resides. Once
created, a pipeline thread loops until it is signaled to ter-
minate. A thread enters its current stage and processes its
work at each cycle. The current stage is determined by an
embedded thread migration algorithm that allows threads
to autonomously (1) process work from its current stage,
(2) follow work down the pipeline, and (3) move up/down
the pipeline in search of work.

The pipeline thread migration algorithm’s general con-
cept is outlined in Fig. 8. A thread first attempts to process a
work unit that has been either carried over or acquired from
the current stage’s queue. The work performed at each stage
is based on the defined callback. The thread then attempts to
carry the current stage’s output work unit down to the next
stage. If more than one work unit is output, all but the carry
over unit is placed in next stage’s queue. Another work unit
is processed from the current stage’s queue if no work unit is
output from the current stage. If no work is available for the
current stage, a thread looks ahead at the next stage’s queue
and moves down if work is available. Otherwise, the thread
moves up one stage in search of work.

As described in Sect. 5.1, the Object Render stage is a
special case. A token system is used to control which thread
can enter the rendering stage. The window’s rendering con-
text is assigned to the thread with the token. To avoid unnec-
essary graphics context switches (and thus overhead), only
one token is provided and is permanently assigned to the

Fig. 8 Generalized pipeline thread migration algorithm

first created thread. If an update thread cannot enter the Ob-
ject Render stage, it places the object in the Object Render
queue and continues.

5.4 VE synchronization

A synchronization point is needed to gather/assemble re-
sults when parallel processing. A synchronization constraint
is in place to prevent an object from being updated un-
til all its interactions are considered. The constraint en-
sures that an object’s state remains consistent throughout
an entire frame. It also allows Object Update to consider
all interactions when updating an object. The update con-
straint is enforced after the Collision Response stage, where
it uses a thread-safe atomic increment operation [31] to
track when all of an object’s modeled interactions are pro-
cessed.

A second Object Render stage constraint is used to deter-
mine when a rendering frame can be swapped. The frame is
swapped only after all objects are rendered. This constraint
is common for rendering, but also plays a role in allowing
the pipeline to process two VE frames simultaneously, as
described in Sect. 5.5.

5.5 Consecutive frame processing

The CPU utilization diminishes if threads are in a wait state.
Therefore, the pipeline can handle two consecutive frames at
a time. Threads can start processing the VE interaction and
update workload for the next frame without waiting for the
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current frame to complete. The first three stages can be pro-
cessed one frame ahead. Rendering is not performed imme-
diately for the next frame since the frame buffer has not been
swapped. A secondary Object Rendering queue is added to
the pipeline for the next frame’s objects. Each object and in-
teraction pair has an identifier that indicates which frame it
currently belongs to.

It is possible for objects to wait in next frame’s queue if
rendering is a bottleneck. However, most physically based
VEs are typically complex enough that rendering is not
the bottleneck. Objects waiting in the secondary rendering
queue are processed once the rendering frame is swapped.

5.6 Thread synchronization considerations

Since multiple threads can process interactions for objects,
a method is required to consolidate collision response re-
sults to update objects. Collision Response does not directly
modify an object since an object’s state must be consistent
through an entire frame. Instead, collision response writes
interaction data to temp buffers and passes only pointers to
the objects. Interaction data is accumulated by Object Up-
date. The object update constraint described in Sect. 5.4 en-
sures all interactions are considered prior to updating an ob-
ject. The use of the temp buffers for interaction data reduces
thread synchronization by allowing the Collision Detection
and Response stages to work on objects in read-only mode,
while Object Update and Object Render stages have exclu-
sive access to an object for modifications.

Overall thread synchronization requirements are reduced
by forcing most synchronization to occur between adjacent
pipeline stages. Critical sections provide a light weight lock-
ing mechanism [31] to make queue access thread-safe. Each
queue is implemented as a circular array of pointers, so lock
times are very fast. Only pointer values and head/tail indices
need to be updated within the critical section. Synchroniza-
tion overhead is reduced by allowing threads to carry-over
work units to subsequent pipeline stages without locks.

The Collision Detection and Response queue can possi-
bly grow large in VEs with a large number of objects. Poten-
tial synchronization overhead was eliminated by not having
a Collision Response queue, and allowing the same thread
to perform both tasks. The size of the Collision Detection
queue is also minimized by having the Broad Phase Colli-
sion Detection stage identify potentially interacting object
pairs.

Hierarchical scene graphs establish dependencies be-
tween nodes and make it difficult to parallelize VE process-
ing. A flat tree structure is used to maintain the VE. Every
3D Object maintains its relevant properties and data (e.g.,
transformations, material properties, etc.) to make them in-
dependent of other objects, and easily distributable across
different threads. Objects maintain a bounding box, so tech-
niques such as view frustum culling are still possible.

Memory allocation from the heap is very expensive and
introduces system-level synchronization. Efforts are made
to minimize memory allocations through preallocated and
reused memory. The circular arrays for the queues are sized
based on the VE prior to execution. For example, the object-
based queues are initialized according to the number of ob-
jects. Additionally, some memory used by the temp buffers
for interaction data is not released back to the system until
execution is terminated. The memory (e.g., dynamic arrays)
is reused in subsequent interactions and expanded only if
necessary. This is a trade-off between memory usage and
VE performance.

6 Application development

6.1 Application module overview

A modular design has been created for developing applica-
tions with the architecture. An overview of the main appli-
cation development modules is given in Fig. 9.

A VE Manager is the top-level container for several main
application modules. The Object Manager maintains the 3D
Objects used to model a VE. The Object Interaction Man-
ager maintains the complete set of interaction pairs and the
pipeline queue data structures for VE processing. During ap-
plication initialization, the VE Manager creates and destroys
the pipeline threads. A thread pooling design is used. An ap-
plication can specify the maximum number of threads for
the pool. The VE Manager can optionally detect the CPU
core count and set the thread pool size accordingly. Threads
are dynamically created and/or destroyed to meet the maxi-
mum thread count requirement.

The Window has modules required for graphics render-
ing and display. The Device I/O Manager maintains differ-
ent types of device interfaces. Haptic device support is de-
scribed in Sect. 6.3.

6.2 Message passing interface

A message passing interface has also been established to
handle events in the VE. Messages are generated and sent
to an inbox provided by each 3D Object. Messages are de-
rived from a base class interface. Each message implements
a processMessage callback that defines a message’s purpose.
For example, the callback can set flags, or modify objects’
properties due to events. Messages within an object’s inbox
are processed in the Object Update stage immediately before
triggering the object’s update callback.

6.3 Haptic device support

Device interface modules enable I/O devices to be interfaced
to a VE. Some device interfaces utilize a light-weight thread
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Fig. 9 Overview of the application development modules

for device communication, and provide thread-safe methods
to read/write device data. A 3D Object’s behavior manager
can be linked to a device interface in order to represent a de-
vice in the VE. Network-based devices have also been tested
using this interfacing method. Device interfaces are main-
tained by a Device I/O manager.

Haptic devices are a special case in which force feed-
back needs to be computed from a VE and sent to a haptic
device. A haptics rendering loop typically needs to run at
a 1 kHz update rate in order to maintain haptic stability. To
support parallel haptic interactions with complex VEs, colli-
sion forces are computed at pipeline update rates outside the
main haptic rendering loop (residing in the device interface).
Significant force changes can result between new updates,
leading to mechanical instabilities if directly inserted into
the haptic loop. Thus, a multirate haptic interface [9] intro-
duces new forces into the haptic loop and interpolate forces
(at haptic rates) between new updates. The multi-rate haptic
interfacing is based on (1). The new collision force (f (PN))
and the local force gradient (∇f (PN)) are computed by the
pipeline based on the current haptic device position (PN ). Pn

is the device’s position at haptic update rates. A new force is
interpolated within the haptic loop (F(Pn)) using ∇f (PN).
The interpolated force is a first-order approximation of the
change in force based on the deviation of the haptic device’s
position from PN .

F(Pn) = f (PN) + ∇f (PN)(Pn − PN) (1)

7 Performance experiments

Experiments were conducted to evaluate the performance of
the architecture. Scalability and load balancing is first ex-
plored. Comparative studies with published parallel frame-

works (Sect. 7.2.3) are then conducted. A serial version of
each test application was developed and used as a basis.

7.1 Test applications

The two test applications used are shown in Fig. 10. The
first allows varying the VE complexity to explore perfor-
mance under various conditions. The second is a practical
application of the architecture. A head-trauma simulator has
been developed, and key aspects of the simulation are bench-
marked.

7.1.1 Deformable mass–spring particles

The VE shown in Fig. 10 (left) is a 6-wall room contain-
ing N deformable mass–spring based particles (42 nodes
and 162 springs each). The mass–spring system’s step size
for each particle is randomly set to run between 1–10× per
frame to vary its complexity. Gravity is turned off in most
cases so particles can bounce around the room and deform
as they collide with each other and the walls. The worst-case
scenario, where all objects in the VE can interact with each
other, is tested. This results in N(N + 1)/2 + 6N possible
interactions.

7.1.2 Craniotomy surgical simulator

A Virtual Reality-based training simulator is being devel-
oped to practice the skills required to perform a craniotomy.
Several key steps from a craniotomy have been addressed,
including scalp cutting and retraction, and simulation of var-
ious bone cutting tools (e.g., bone drills and perforators),
that are typically used in clinical practice. The middle and
right images in Fig. 10 show scalp scraping for retraction,
and burr hole cutting with a perforator tool. 3D models have
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Fig. 10 Example applications developed on the pipeline VE architec-
ture. The left figure shows a VE consisting of deformable mass–spring
based particles that interact with each other and the walls. The middle

and right figures show the skin-flap cutting/retracting and burr hole
cutting steps of a craniotomy simulator

been created from real surgical tools and are controlled by
haptic devices during their use. Voxel-based algorithms are
used for modeling the tool-bone interactions and texture-
based volume rendering displays the virtual bone material
[1]. The VE consists of 30 objects (2 tools and 28 anatomi-
cal structures), of which 27 are real-time deformable mass–
spring based objects.

7.2 Experiments

The described pipeline architecture and test applications are
implemented in C++ with OpenGL for graphics rendering.
The test system used for the experiments is a 6-core Intel
i7-980x (3.33 GHz with 12 MB Cache) processor, 6 GB
RAM, NVidia Quadro 5000 (2560 MB) graphics card and
Windows 7 64-bit OS.

The number of threads used to execute the pipeline is
varied and the time required to process a specific number
of frames is measured. The measured data is then used to
compute the average throughput in frames per second (FPS),
speed-up over the single-thread case (Sp), and speed-up over
a serial implementation developed external to the architec-
ture (Ss ). Sp and Ss are computed using (2) and (3). T1 and
Tp are execution times for 1 and p threads, respectively. Ts

is the execution time for the serial implementation. Thread
efficiency (Ep) is computed using (4). The experimental re-
sults are also compared with the ideal theoretical results.

Sp = T1/Tp (2)

Ss = Ts/Tp (3)

Ep = Sp/p (4)

7.2.1 Scalability

The particle VE was used to evaluate the scalability of the
pipeline architecture. The number of objects, N , in the VE
and the number of pipeline threads, p, were varied. Results

are taken for cases when 100 ≤ N ≤ 1,000 in increments of
100, and 1 ≤ p ≤ 6. The time taken to process 800 frames is
measured and used to compute the average throughput, Sp ,
and Ep .

7.2.2 Load balancing

The particle VE was also used to analyze the pipeline’s load
balancing. The time each thread works is measured over 800
frames. The measurement reflects the time to acquire work
(e.g., queue synchronization) and actual processing time.

The Sp for dynamic load balancing methods (e.g., work
stealing) can sometimes be affected by the gain or loss of
collisions [18, 19]. A per-frame Sp analysis is performed to
evaluate how the pipeline responds to changes in the number
of collisions. The collision count and total frame process-
ing time is captured for 600 frames. The particle VE with
300 objects is used for the experiment since it allows suffi-
cient variation in the number of collisions over the sampled
frames. Gravity is turned on so particles can drop to the floor
and pile up to increase collisions.

7.2.3 Comparative study

VE processing pipelines were implemented using the Intel
TBB [23], Intel Cilk Plus [24], and OpenMP [35] parallel
frameworks. All implementations drive the same architec-
ture modules (e.g., 3D Objects, interaction pairs, and algo-
rithms, etc.) to compare parallel performance. Each frame-
work provides constructs to specify parallel sections of code
and the number of worker threads. The implementations rely
on the frameworks’ thread scheduling algorithms without
introducing additional overhead. Since dependencies exist
between pipeline stages (e.g., Sect. 5.4), all the work in a
stage is processed in parallel prior to moving to the next
stage. Similar to our approach, all work except the graphics
rendering is multithreaded. Global vector arrays store the 3D
Object and interaction pair work units.
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Fig. 11 Particle VE throughput. Dashed line is serial results

Both Intel TBB and Cilk Plus utilize work-stealing strate-
gies for load balancing. The Intel TBB version uses a
parallel_for to split work into blocked_ranges, and as-
signs each range to the specified number of threads. The
blocked_ranges are based on auto_partitioner so the paral-
lel loop can optimize the subdivision based on work-stealing
events. The initial subdivision is proportional to the num-
ber of threads. Subranges can be further subdivided for load
balancing when a thread becomes idle and work stealing is
required.

Intel Cilk Plus, the C++ extension to Cilk [14], provides a
cilk_for construct to divide work and assign them to threads’
queues. Work is distributed based on a specified grain size
and the number of threads. The default grain size is used
since it provides the best performance. The Cilk Plus sched-
uler performs work stealing when threads’ queues become
empty.

The OpenMP implementation uses a parallel_for direc-
tive to specify work to be computed in parallel. The itera-
tions of a loop are distributed across the threads using static
scheduling since it results in the best performance. Static
scheduling divides the workload into chunks that are ap-
proximately equal in size and assigns each chunk to a thread.

Both test VEs are used for the performance experiments.
A serial implementation of each application serves as the
baseline for computing Ss . The particle VE is used to com-
pare Ss under light (100 objects) and heavy (1,000 objects)
loads. The serial particle VE throughput results are given in
Fig. 11 as a dashed line. The skin retraction step of the cran-
iotomy is automated to provide a consistent test case, and
the time required to process 1,000 frames is measured. Only
1–5 threads are tested since one thread is reserved for haptics
rendering. The average serial throughput for the craniotomy
VE is 99 FPS.

Fig. 12 Particle VE speedup. Dashed line is ideal results

Fig. 13 Particle VE thread efficiency. Ideal results shown as dashed
line

8 Experimental results

8.1 Scalability results

Scalability results are provided in Figs. 11, 12, and 13.
The ideal theoretical values are graphed as dashed lines in
Figs. 12 and 13 for reference. The experiments show that
the architecture scales efficiently with the number of CPU
cores. Near-linear Sp is achieved even over a wide range of
objects. Each additional thread increases the VE throughput.
On average, Sp only dropped by 0.2–0.6% with each addi-
tional 100 objects. These results suggest a low overhead for
the architecture. A slight drop in the Ep (1.5–2.3% on av-
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Fig. 14 Total time threads worked shows very good load balancing

Table 1 Seconds thread worked per stage over 800 frames (500 ob-
jects)

Thread BP/CD CD/CR Update Render Total

1 2.0738 1.5049 6.2195 2.4065 12.2047

2 3.6991 1.6294 6.8257 0.0 12.1542

3 3.6730 1.6456 6.8388 0.0 12.1573

4 3.6502 1.6637 6.8459 0.0 12.1598

5 3.6016 1.7264 6.8310 0.0 12.1590

6 3.7209 1.5994 6.8414 0.0 12.1616

erage) occurs with each additional thread. However, Fig. 13
shows the Ep remains greater than 89% in all test cases.

8.2 Load Balancing Results

The results in Fig. 14 show that the total time each thread
works is very balanced for all cases. Table 1 breaks down
the times by pipeline stage for the 500 object case. Timings
for threads 2–6 are very similar. Thread 1’s time distribution
differs since it also performs graphics rendering.

Figure 15 provides per-frame collisions, and Sp for 1–6
threads. The particles are initially close together so a large
number of collisions (1,646) occur early. Repulsive forces
cause the particles to separate over time dropping the col-
lisions to 160. The number of collisions increases (up to
1,056) as the particles pile up on the floor. The results
show no significant effect in Sp as the number of collisions
change. The Sp remains fairly level independently of the
number of collisions. We did observe a slight variance in-
crease in the per-frame Sp (0.001–0.08 with 2–6 threads) as
more system threads were utilized. We attribute some of the
effects to the OS scheduling. The synchronization costs are
also likely randomly distributed from frame-to-frame. How-
ever, variance at the per-frame level is not perceivable to the
user of the VE since the frame rates are sufficiently high, as
shown in Fig. 11. The 600 frames represent about 4 seconds
for the 6 thread case.

8.3 Comparative study results

Results for the particle VE under light and heavy loads are
given in Figs. 16 and 17, respectively. All pipelines show

Fig. 15 The per-frame number of collisions (top) and speedups (bottom)
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Fig. 16 Speedup over serial version under light load. Dual-frame
pipeline architecture denoted as “DF Pipeline”

Fig. 17 Speedup over serial version under heavy load. Dual-frame
pipeline architecture denoted as “DF Pipeline”

little to no overhead when only 1 thread is used. The dual-
frame pipeline architecture shows the best Ss in both light
and heavy loads. The OpenMP and Intel TBB results are
very similar to each other since work is initially evenly di-
vided. TBB only employs work-stealing when required. The
Ss for the Intel Cilk Plus version remains fairly flat after the
2 threads case. The pipeline work is of a fine-medium grain
nature, which can be sub-optimal for Cilk [2]. Several at-
tempts at specifying a grain size did not result in better per-
formance.

Under light loads, the architecture provides near-linear Ss .
As expected, performance improved in most cases under the

Fig. 18 Speedup over serial version. Five pipeline and one haptics
thread tested. Average serial pipeline throughput is 99 FPS

heavy load condition since more work can be performed
in parallel. No improvement was seen with Cilk Plus. The
pipeline architecture exhibited super-linear Ss under heavy
loads. This is likely due the large amount of cache provided
by the CPU. In both load cases, the pipeline architecture
is approximately 8–28% faster than OpenMP and TBB and
40–300% faster than Cilk Plus when 2–6 threads are used.

The Ss results for the craniotomy simulator are given in
Fig. 18. Similar to the particle VE, the OpenMP, and Intel
TBB performance are comparable. Cilk Plus only achieves
minimal speedups. The pipeline architecture provides the
best Ss . The architecture is roughly 1.3–1.6× faster than
OpenMP and TBB, and 1.6–3.0× faster than Cilk Plus for
the 2–5 thread cases.

9 Discussion

Section 2 reviewed other approaches taken to parallelize
VEs. Many methods focus on generating lists of tasks, and
assigning them to processors for parallel execution. Most
methods rely on static work scheduling. A centralized work
scheduler is common. Dynamic load balancing methods for
VEs are described, but they require additional work stealing
or tracking of run-time heuristics. The speedups from these
methods are also influenced by the addition and removal of
collisions.

We propose a new way of parallelizing VEs. VE data and
algorithms are encapsulated into objects, and a pipeline of
tasks is generated. Threads move work down the pipeline
without worrying about task assignment order. The execu-
tion order is enforced by the pipeline, and the described con-
straints ensure VE consistency. The migration algorithm en-
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ables threads to dynamically acquire work without a sched-
uler. No supplemental work stealing or heuristics is re-
quired. Performance speedups are not influenced by colli-
sions since work is not explicitly assigned. Threads auto-
matically migrate to pipeline stages where work resides. The
pipeline work flow has been optimized. Processing work
from up to two consecutive frames helps keep thread utiliza-
tion high. The introduced carry-over strategy moves work
down the pipeline without synchronization. The experimen-
tal results show that our method scales well, is efficient, and
requires minimal overhead. Our method also provides better
speedups than other comparable published methods.

The primary motivation of the architecture relates to
the requirements of interactive computer-based VEs. In our
case, it is for interactive physically-based surgical simu-
lations. Interactive VEs require detecting interactions (e.g.
collision and response), updating, and rendering. The se-
mantics for collision detection is interaction dependent, and
can range from actual intersection testing to setting a flag to
trigger a response. The architecture also supports VEs with-
out interactions by placing rendered objects directly into the
update stage. This allows the architecture to be used for
other types of VEs (e.g., with no interactions). For example,
scripted animations could be played back using the Object
Update and Object Render stages.

The pipeline parallelizes VEs independently of algo-
rithms. Both parallel and sequential algorithms are sup-
ported. We are currently testing parallel algorithms for ob-
ject updating, and early results are promising. Support for
sequential algorithms is beneficial in several ways. Con-
verting existing sequential algorithms into parallel forms
can be difficult and almost always requires redesigning and
rewrites. Additionally, the modular nature of the architecture
supports integration of different researchers’ work, a desir-
able feature in the surgical simulation field [6, 8, 29], with-
out considerable modifications to existing algorithms. The
drawback to using sequential algorithms is that performance
may not be optimal if only a few and very large/complex ob-
jects model a VE. In this case, it may be beneficial to parti-
tion large/complex objects into smaller objects (and model
interactions between the partitions) to improve workload
balancing and the VE’s performance. An approach similar
to this has been previously suggested [18, 39].

As described in Sect. 5.1, all pipeline stages except Ob-
ject Render are multithreaded. Rendering does occur in par-
allel to the work in the other stages, however, the token sys-
tem constrains the Object Render stage to one thread. Using
NVidia’s PerfKit [33], we found that the GPU can be over
utilized and considerable time is spent within the graphics
driver. The graphics drivers do not seem to be optimized for
multithreaded OpenGL rendering. A few methods, includ-
ing rendering to off-screen buffers with image compositing

and multiwindow rendering, have been tried. We will con-
tinue to investigate this issue in an attempt to remove the
single-threaded rendering constraint.

Our initial focus has been on parallelizing CPU-based al-
gorithms. We are currently testing the use of GPU-based
algorithms within the architecture. Model updates using
CUDA [32] are running successfully without any changes to
the pipeline. Other algorithms, such as GPU-based collision
detection [16], need to render to an off-screen buffer [34].
This requires a small enhancement to the pipeline as a side-
effect of the multithreaded rendering issue just described.
The Object Render stage can serve as a GPU resource by
adding an auxiliary queue so the rendering thread can pro-
cess GPU-based work units. This method has been tested
within the craniotomy simulator in Fig. 10. The GPU-based
collisions are tested between pairs of objects, so no addi-
tional changes to the pipeline are required.

As we expand to use different processing units (e.g. CPU
and GPU), it would be interesting to investigate methods for
optimizing processing unit selection. Currently it is up to the
developer. Hermann et al. is the only work that we are aware
of that has applied this technique to VEs [19]. As described
in Sect. 2, work-stealing is guided to execute the time inte-
gration step for physics simulations. We hope to apply the
optimization to the entire pipeline. Other recent generalized
parallel works have described methods that support process-
ing unit selection [7, 26, 27, 43].

10 Conclusion

We presented an architecture for developing parallel VEs
for multicore processor systems. A common framework for
interactive VEs is described. The framework encompasses
a wide-range of applications, such as medical simulations,
that require computing VE interactions and updating. The
framework helped establish a uniform object-based repre-
sentation of VEs, and a multistage parallel pipeline. The de-
scribed pipeline execution model provides a decentralized
and dynamic work scheduling method. Work from up to
two consecutive frames can be executed in parallel. Work-
load balancing is automatically achieved with relatively low
overheads. Results show that the architecture is efficient and
scales well with the number of CPU cores.

Applications written with the pipeline VE architecture
can see greater performance boosts as the number of CPU
cores increase. This makes it possible to write applications
for today’s hardware and benefit from future systems with-
out modifications.
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