404 research outputs found

    Investigating the interaction of sunset yellow aggregates and 6-fluoro-2- naphthoic acid: increasing probe molecule complexity

    Get PDF
    The interaction of small molecules with non-covalent assemblies is of wide interest. The use of a magnetically-active reporter nucleus allows information to be obtained in the presence of spectral overlap or in cases of high dynamic range. In this paper we explore the interaction of a larger probe molecule, 6-fluoro-2-naphthoic acid with assemblies of sunset yellow using 19F chemical shifts and diffusion NMR methods. Comparing the observations with previous studies using fluorophenols, 6-fluoro-2- naphthoic acid prefers to associate as clusters at the ends of the sunset yellow stacks

    Subtle pH variation around pH 4.0 affects aggregation kinetics and aggregate characteristics of recombinant human insulin

    Get PDF
    Insulin is a biotherapeutic protein, which, depending on environmental conditions such as pH, has been shown to form a large variety of aggregates with different structures and morphologies. This work focuses on the formation and characteristics of insulin particulates, dense spherical aggregates having diameters spanning from nanometre to low-micron size. An in-depth investigation of the system is obtained by applying a broad range of techniques for particle sizing and characterisation. An interesting observation was achieved regarding the formation kinetics and aggregate characteristics of the particulates; a subtle change in the pH from pH 4.1 to pH 4.3 markedly affected the kinetics of the particulate formation and led to different particulate sizes, either nanosized or micronsized particles. Also, a clear difference between the secondary structure of the protein particulates formed at the two pH values was observed, where the nanosized particulates had an increased content of aggregated β-structure compared to the micronsized particles. The remaining characteristics of the particles were identical for the two particulate populations. These observations highlight the importance of carefully studying the formulation design space and of knowing the impact of parameters such as pH on the aggregation to secure a drug product in control. Furthermore, the identification of particles only varying in few parameters, such as size, are considered highly valuable for studying the effect of particle features on the immunogenicity potential.Drug Delivery Technolog

    NMR investigations of the interaction between the azo-dye sunset yellow and Fluorophenol

    Get PDF
    The interaction of small molecules with larger noncovalent assemblies is important across a wide range of disciplines. Here, we apply two complementary NMR spectroscopic methods to investigate the interaction of various fluorophenol isomers with sunset yellow. This latter molecule is known to form noncovalent aggregates in isotropic solution, and form liquid crystals at high concentrations. We utilize the unique fluorine-19 nucleus of the fluorophenol as a reporter of the interactions via changes in both the observed chemical shift and diffusion coefficients. The data are interpreted in terms of the indefinite self-association model and simple modifications for the incorporation of a second species into an assembly. A change in association mode is tentatively assigned whereby the fluorophenol binds end-on with the sunset yellow aggregates at low concentration and inserts into the stacks at higher concentrations

    N-terminal Pro-Brain Natriuretic Peptide Levels Predict Left Ventricular Systolic Function in Patients with Chronic Kidney Disease

    Get PDF
    N-terminal pro-brain natriuretic peptide (NT-proBNP) can be a useful marker for left ventricular (LV) dysfunction in patients without kidney disease. This study was conducted to clarify the relationship between NT-proBNP and LV systolic function in patients with decreased renal function. We studied 256 chronic kidney disease (CKD) patients, patients on dialysis were excluded. The median glomerular filtration rate was 24 (13-36) mL/min/1.73 m2 and the median NT-proBNP was 4,849 (1,310-19,009) pg/mL. The prevalence of LV systolic dysfunction increased from the lower to the upper NT-proBNP quartiles (I, 17%; II, 34%; III, 61%; and IV, 72%; p<0.001 for trend). The NT-proBNP quartile was an independent predictor of LV systolic dysfunction after adjustment for renal function, compared with quartile I: II, odds ratio (OR) 3.99 (95% confidence interval [CI],1.34-11.93); III, OR 11.28 (95% CI, 3.74-33.95); and IV, OR 36.97 (95% CI, 11.47-119.1). Area under the curve and optimum cut points for NT-proBNP to detect LV systolic dysfunction were 0.781 and 2,165 pg/mL in CKD stage 3, 0.812 and 4,740 pg/mL in CKD stage 4, and 0.745 and 15,892 pg/mL in CKD stage 5. The NT-proBNP level was a predictor of LV systolic dysfunction in CKD patients. Optimum cut points should be stratified according to renal function

    Morphology-Specific Inhibition of β-Amyloid Aggregates by 17β-Hydroxysteroid Dehydrogenase Type 10

    Get PDF
    A major hallmark of Alzheimer's disease (AD) is the formation of toxic aggregates of the β-amyloid peptide (Aβ). Given that Aβ peptides are known to localise within mitochondria and interact with 17β-HSD10, a mitochondrial protein expressed at high levels in AD brains, we investigated the inhibitory potential of 17β-HSD10 against Aβ aggregation under a range of physiological conditions. Fluorescence self-quenching (FSQ) of Aβ(1-42) labelled with HiLyte Fluor 555 was used to evaluate the inhibitory effect under conditions established to grow distinct Aβ morphologies. 17β-HSD10 preferentially inhibits the formation of globular and fibrillar-like structures but has no effect on the growth of amorphous plaque-like aggregates at endosomal pH 6. This work provides insights into the dependence of the Aβ-17β-HSD10 interaction with the morphology of Aβ aggregates and how this impacts enzymatic function. 17 β-HSD10 interaction with Aβ amyloid: what type of amyloid? 17β-hydroxysteroid dehydrogenase type 10 interacts with β-amyloid (Aβ) aggregates and suppresses Aβ-induced apoptosis in neurons, but the aggregate morphology inhibited by 17β-HSD10 remains unknown. Fluorescence self-quenching demonstrated that fibrils and globular aggregates, but not plaques, are targeted by 17β-HSD10

    Non-Conjugated Small Molecule FRET for Differentiating Monomers from Higher Molecular Weight Amyloid Beta Species

    Get PDF
    Background: Systematic differentiation of amyloid (Aβ) species could be important for diagnosis of Alzheimer's disease (AD). In spite of significant progress, controversies remain regarding which species are the primary contributors to the AD pathology, and which species could be used as the best biomarkers for its diagnosis. These controversies are partially caused by the lack of reliable methods to differentiate the complicated subtypes of Aβ species. Particularly, differentiation of Aβ monomers from toxic higher molecular weight species (HrMW) would be beneficial for drug screening, diagnosis, and molecular mechanism studies. However, fast and cheap methods for these specific aims are still lacking. Principal Findings: We demonstrated the feasibility of a non-conjugated FRET (Förster resonance energy transfer) technique that utilized amyloid beta (Aβ) species as intrinsic platforms for the FRET pair assembly. Mixing two structurally similar curcumin derivatives that served as the small molecule FRET pair with Aβ40 aggregates resulted in a FRET signal, while no signal was detected when using Aβ40 monomer solution. Lastly, this FRET technique enabled us to quantify the concentrations of Aβ monomers and high molecular weight species in solution. Significance: We believe that this FRET technique could potentially be used as a tool for screening for inhibitors of Aβ aggregation. We also suggest that this concept could be generalized to other misfolded proteins/peptides implicated in various pathologies including amyloid in diabetes, prion in bovine spongiform encephalopathy, tau protein in AD, and α-synuclein in Parkinson disease.National Institute on Aging (K25AG036760

    Fluorescent N-arylaminonaphthalene sulfonate probes for amyloid aggregation of α-synuclein.

    Get PDF
    The deposition of fibrillar structures (amyloids) is characteristic of pathological conditions including Alzheimer's and Parkinson's diseases. The detection of protein deposits and the evaluation of their kinetics of aggregation are generally based on fluorescent probes such as thioflavin T and Congo red. In a search for improved fluorescence tools for studying amyloid formation, we explored the ability of N-arylaminonaphthalene sulfonate (NAS) derivatives to act as noncovalent probes of α-synuclein (AS) fibrillation, a process linked to Parkinson's disease and other neurodegenerative disorders. The compounds bound to fibrillar AS with micromolar K(d)s, and exhibited fluorescence enhancement, hyperchromism, and high anisotropy. We conclude that the probes experience a hydrophobic environment and/or restricted motion in a polar region. Time- and spectrally resolved emission intensity and anisotropy provided further information regarding structural features of the protein and the dynamics of solvent relaxation. The steady-state and time-resolved parameters changed during the course of aggregation. Compared with thioflavin T, NAS derivatives constitute more sensitive and versatile probes for AS aggregation, and in the case of bis-NAS detect oligomeric as well as fibrillar species. They can function in convenient, continuous assays, thereby providing useful tools for studying the mechanisms of amyloid formation and for high-throughput screening of factors inhibiting and/or reversing protein aggregation in neurodegenerative diseases
    corecore