295 research outputs found

    Directing peptide crystallization through curvature control of nanotubes ‡

    Get PDF
    International audienceIn the absence of efficient crystallization methods, the molecular structures of fibrous assemblies have so far remained rather elusive. In this paper, we present a rational method to crystallize the lanreotide octapeptide by modification of a residue involved in a close contact. Indeed, we show that it is possible to modify the curvature of the lanreotide nanotubes and hence their diameter. This fine tuning leads to crystallization because the radius of curvature of the initially bidimensional peptide wall can be increased up to a point where the wall is essentially flat and a crystal is allowed to grow along a third dimension. By comparing X-ray diffraction data and Fourier transform Raman spectra, we show that the nanotubes and the crystals share similar cell parameters and molecular conformations, proving that there is indeed a structural continuum between these two morphologies. These results illustrate a novel approach to crystallization and represent the first step towards the acquisition of an Å-resolution structure of the lanreotide nanotubes β-sheet assembly

    Effect of hypoxia/reoxygenation on the cytokine-induced production of nitric oxide and superoxide anion in cultured osteoarthritic synoviocytes

    Get PDF
    SummaryObjectiveHypoxia/reoxygenation (H/R) is an important feature in the osteoarthritis (OA) physiopathology. Nitric oxide (NO) is a significant proinflammatory mediator in the inflamed synovium. The purpose of this study was to investigate the effects of H/R on inducible NO synthase (iNOS) activity and expression in OA synoviocytes. In addition we studied the relationship between nitrosative stress and NADPH oxidase (NOX) in such conditions.MethodsHuman cultured synoviocytes from OA patients were treated for 24 h with interleukin 1-β (IL-1β), tumour necrosis factor α (TNF-α) or neither; for the last 6 h, they were submitted to either normoxia or three periods of 1-h of hypoxia followed by 1-h of reoxygenation. NO metabolism (iNOS expression, nitrite and peroxynitrite measurements) was investigated. Furthermore, superoxide anion O2− production, NOX subunit expression and nitrosylation were also assessed.ResultsiNOS expression and nitrite (but not peroxynitrite) production were significantly increased under H/R conditions when compared with to normoxia (P < 0.05). H/R conditions decreased O2− production from ∼0.20 to ∼0.12 nmol min−1 mg proteins−1 (P < 0.05), while NOXs' subunit expression and p47-phox phosphorylation were increased. NOXs and p47-phox were dramatically nitrosylated under H/R conditions (P < 0.05 vs normoxia). Using NOS inhibitors under H/R conditions, p47-phox nitrosylation was prevented and O2− production was restored at normoxic levels (0.21 nmol min−1 mg of proteins−1).ConclusionsOur results provide evidence for an up-regulation of iNOS activity in OA synoviocytes under H/R conditions, associated to a down-regulation of NOX activity through nitrosylation. These findings highlight the importance of radical production to OA pathogenesis, and appraise the metabolic modifications of synovial cells under hypoxia

    High-sensitivity versus conventional troponin in the emergency department for the diagnosis of acute myocardial infarction

    Get PDF
    International audienceINTRODUCTION: Recently, newer assays for cardiac troponin (cTn) have been developed which are able to detect changes in concentration of the biomarker at or below the 99th percentile for a normal population. The objective of this study was to compare the diagnostic performance of a new high-sensitivity troponin T (HsTnT) assay to that of conventional cTnI for the diagnosis of acute myocardial infarction (AMI) according to pretest probability (PTP). METHODS: In consecutive patients who presented to our emergency departments with chest pain suggestive of AMI, levels of HsTnT were measured at presentation, blinded to the emergency physicians, who were asked to estimate the empirical PTP of AMI. The discharge diagnosis was adjudicated by two independent experts on the basis of all available data. RESULTS: A total of 317 patients were included, comprising 149 (47%) who were considered to have low PTP, 109 (34%) who were considered to have moderate PTP and 59 (19%) who were considered to have high PTP. AMI was confirmed in 45 patients (14%), 22 (9%) of whom were considered to have low to moderate PTP and 23 (39%) of whom were considered to have high PTP (P < 0.001). In the low to moderate PTP group, HsTnT levels ≥ 0.014 μg/L identified AMI with a higher sensitivity than cTnI (91%, 95% confidence interval (95% CI) 79 to 100, vs. 77% (95% CI 60 to 95); P = 0.001), but the negative predictive value was not different (99% (95% CI 98 to 100) vs. 98% (95% CI 96 to 100)). There was no difference in area under the receiver operating characteristic (ROC) curve between HsTnT and cTnI (0.93 (95% CI 0.90 to 0.98) vs. 0.94 (95% CI 0.88 to 0.97), respectively). CONCLUSIONS: In patients with low to moderate PTP of AMI, HsTnT is slightly more useful than cTnI. Our results confirm that the use of HsTnT has a higher sensitivity than conventional cTnI

    Diagnostic accuracy of C-reactive protein and procalcitonin in suspected community-acquired pneumonia adults visiting emergency department and having a systematic thoracic CT scan

    Get PDF
    ESCAPED Study GroupInternational audienceIntroductionCommunity-acquired pneumonia (CAP) requires prompt treatment, but its diagnosis is complex. Improvement of bacterial CAP diagnosis by biomarkers has been evaluated using chest X-ray infiltrate as the CAP gold standard, producing conflicting results. We analyzed the diagnostic accuracy of biomarkers in suspected CAP adults visiting emergency departments for whom CAP diagnosis was established by an adjudication committee which founded its judgment on a systematic multidetector thoracic CT scan.MethodsIn an ancillary study of a multi-center prospective study evaluating the impact of systematic thoracic CT scan on CAP diagnosis, sensitivity and specificity of C-reactive protein (CRP) and procalcitonin (PCT) were evaluated. Systematic nasopharyngeal multiplex respiratory virus PCR was performed at inclusion. An adjudication committee classified CAP diagnostic probability on a 4-level Likert scale, based on all available data.ResultsTwo hundred patients with suspected CAP were analyzed. The adjudication committee classified 98 patients (49.0 %) as definite CAP, 8 (4.0 %) as probable, 23 (11.5 %) as possible and excluded in 71 (35.5 %, including 29 patients with pulmonary infiltrates on chest X-ray). Among patients with radiological pulmonary infiltrate, 23 % were finally classified as excluded. Viruses were identified by PCR in 29 % of patients classified as definite. Area under the curve was 0.787 [95 % confidence interval (95 % CI), 0.717 to 0.857] for CRP and 0.655 (95 % CI, 0.570 to 0.739) for PCT to detect definite CAP. CRP threshold at 50 mg/L resulted in a positive predictive value of 0.76 and a negative predictive value of 0.75. No PCT cut-off resulted in satisfactory positive or negative predictive values. CRP and PCT accuracy was not improved by exclusion of the 25 (25.5 %) definite viral CAP cases.ConclusionsFor patients with suspected CAP visiting emergency departments, diagnostic accuracy of CRP and PCT are insufficient to confirm the CAP diagnosis established using a gold standard that includes thoracic CT scan. Diagnostic accuracy of these biomarkers is also insufficient to distinguish bacterial CAP from viral CAP

    Liquid crystalline properties of type I collagen: Perspectives in tissue morphogenesis

    Get PDF
    Collagen molecules form the major part of tissues like bone, cornea or tendon where they organize into ordered fibrillar networks. The acid-soluble protein spontaneously assembles in liquid crystalline phases, characterized in polarized light microscopy and X-ray diffraction. Collagen fibrillogenesis obtained in condensed media establishes a link between the fibrillar networks described in vivo and the mesomorphic states obtained in vitro. Cellematrix interactions on these biomimetic materials are currently analysed with perspectives in tissue engineering. In a morphogenetic context, we propose the hypothesis of a liquid crystalline order, between soluble precursor molecules, preceding fibrillogenesis

    Controlling the assembly of coiled-coil peptide nanotubes

    Get PDF
    An ability to control the assembly of peptide nanotubes (PNTs) would provide biomaterials for applications in nanotechnology and synthetic biology. Recently, we presented a modular design for PNTs using α-helical barrels with tunable internal cavities as building blocks. These first-generation designs thicken beyond single PNTs. Herein we describe strategies for controlling this lateral association, and also for the longitudinal assembly. We show that PNT thickening is pH sensitive, and can be reversed under acidic conditions. Based on this, repulsive charge interactions are engineered into the building blocks leading to the assembly of single PNTs at neutral pH. The building blocks are modified further to produce covalently linked PNTs via native chemical ligation, rendering ca. 100 nm-long nanotubes. Finally, we show that small molecules can be sequestered within the interior lumens of single PNTs

    Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration

    Get PDF
    Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle

    Thick collagen-based 3D matrices including growth factors to induce neurite outgrowth

    Get PDF
    Designing synthetic microenvironments for cellular investigations is a very active area of research at the crossroads of cell biology and materials science. The present work describes the design and functionalization of a three-dimensional (3D) culture support dedicated to the study of neurite outgrowth from neural cells. It is based on a dense self-assembled collagen matrix stabilized by 100-nm wide interconnected native fibrils without chemical crosslinking. The matrices were made suitable for cell manipulation and direct observation in confocal microscopy by anchoring them to traditional glass supports with a calibrated thickness of ∼50 μm. The matrix composition can be readily adapted to specific neural cell types, notably by incorporating appropriate neurotrophic growth factors. Both PC-12 and SH-SY5Y lines respond to growth factors (nerve growth factor and brain-derived neurotrophic factor, respectively) impregnated and slowly released from the support. Significant neurite outgrowth is reported for a large proportion of cells, up to 66% for PC12 and 49% for SH-SY5Y. It is also shown that both growth factors can be chemically conjugated (EDC/NHS) throughout the matrix and yield similar proportions of cells with longer neurites (61% and 52%, respectively). Finally, neurite outgrowth was observed over several tens of microns within the 3D matrix, with both diffusing and immobilized growth factors

    Lipocalin 2 as a potential systemic biomarker for central serous chorioretinopathy

    Get PDF
    No systemic biomarker of Central Serous Chorioretinopathy (CSCR) has been identified. Lipocalin 2 (LCN2 or NGAL), alone or complexed with MMP-9 (NGAL/MMP-9), is increased in several retinal disorders. Serum levels of LCN2 and NGAL/MMP-9 were measured in CSCR patients (n = 147) with chronic (n = 76) or acute/recurrent disease (n = 71) and in age- and sex-matched
    • …
    corecore