334 research outputs found

    Passive flow control study in a convoluted intake using Stereo Particle Image Velocimetry

    Get PDF
    The ability of vortex generators (VG) to reduce the unsteady distortion at the exit plane of an S-duct (AIP) is investigated. The 3 components of the velocity at the AIP were measured using a Stereo Particle Velocimetry system with high spatial resolution. This enabled an assessment of the synchronous swirl distortion at the duct exit. A total of nine VG cases have been investigated with a systematic variation of key design variables. Overall the VGs change the duct secondary flows and separation and are able to substantially restructure the flow field at the AIP. The pressure distortion could be reduced up to 50% and a reduction in pressure loss of 30% was achieved for the mean flow field. The VGs have a substantial influence on the unsteadiness of the flow field with a reduction in peak swirl unsteadiness of 61% and an overall reduction of unsteady swirl distortion of 67%. They also suppress the primary unsteady flow switching mechanism of the datum configuration which is associated with the oscillation of bulk and twin swirl regimes. Consequently, extreme events which leads to high swirl intensity are suppressed which lower by 45% the maximum swirl intensity for the VG cases

    Passive flow control study in an S-duct intake using Stereo Particle Image Velocimetry

    Get PDF
    The ability of vortex generators to reduce the unsteady distortion at the exit plane of an S duct is investigated. The three components of the velocity at the aerodynamic interface plane were measured using a stereo particle velocimetry system with high spatial resolution. This enabled an assessment of the synchronous swirl distortion at the duct exit. A total of nine vortex generator cases have been investigated with a systematic variation of key design variables. Overall, the vortex generators change the duct secondary flows and separation and are able to substantially restructure the flowfield at the aerodynamic interface plane. The pressure distortion could be reduced up to 50%, and a reduction in pressure loss of 30% was achieved for the mean flowfield. The vortex generators had a substantial influence on the unsteadiness of the flowfield with a reduction in peak swirl unsteadiness of 61% and an overall reduction of unsteady swirl distortion of 67%. They also suppressed the primary unsteady flow switching mechanism of the datum configuration, which is associated with the oscillation of bulk and twin swirl regimes. Consequently, extreme events that lead to high swirl intensity are suppressed, which lower by 45% the maximum swirl intensity for the vortex generator cases

    Characterization of freeze-dried oxidized human red blood cells for pre-transfusion testing by synchrotron FTIR microspectroscopy live-cell analysis

    Get PDF
    Oxidative treatment of human red blood cells (RBCs) prior to freeze-drying appears to stabilize the RBCs to withstand dried storage at room temperature. To better understand the effects of oxidation and freeze-drying/rehydration on RBC lipids and proteins, single-cell measurements were performed by synchrotron-based Fourier transform infrared (FTIR) microspectroscopy ‘live-cell’ (unfixed) analysis. Lipid and protein spectral data of tert-butyl hydroperoxide (TBHP)-oxidized RBCs (oxRBCs), FDoxRBCs and control (untreated) RBCs were compared using principal component analysis (PCA) and band integration ratios. The oxRBCs and FDoxRBCs samples had similar spectral profiles that were clearly different to control RBCs. Spectral changes in the CH stretching region of oxRBCs and FDoxRBCs indicated the presence of increased saturated and shorter-chain lipids, consistent with lipid peroxidation and stiffening of the RBC membrane compared to control RBCs. The PCA loadings plot for the fingerprint region of control RBCs corresponding to the α-helical structure of hemoglobin, shows that oxRBCs and FDoxRBCs have conformational changes in the protein secondary structure to β-pleated sheets and β-turns. Finally, the freeze-drying process did not appear to compound or induce additional changes. In this context, FDoxRBCs could become a stable source of reagent RBCs for pre-transfusion blood serology testing. The synchrotron FTIR microspectroscopic live-cell protocol provides a powerful analytical tool to characterize and contrast the effects of different treatments on RBC chemical composition at the single cell level.</p

    Characterization of freeze-dried oxidized human red blood cells for pre-transfusion testing by synchrotron FTIR microspectroscopy live-cell analysis

    Get PDF
    Oxidative treatment of human red blood cells (RBCs) prior to freeze-drying appears to stabilize the RBCs to withstand dried storage at room temperature. To better understand the effects of oxidation and freeze-drying/rehydration on RBC lipids and proteins, single-cell measurements were performed by synchrotron-based Fourier transform infrared (FTIR) microspectroscopy ‘live-cell’ (unfixed) analysis. Lipid and protein spectral data of tert-butyl hydroperoxide (TBHP)-oxidized RBCs (oxRBCs), FDoxRBCs and control (untreated) RBCs were compared using principal component analysis (PCA) and band integration ratios. The oxRBCs and FDoxRBCs samples had similar spectral profiles that were clearly different to control RBCs. Spectral changes in the CH stretching region of oxRBCs and FDoxRBCs indicated the presence of increased saturated and shorter-chain lipids, consistent with lipid peroxidation and stiffening of the RBC membrane compared to control RBCs. The PCA loadings plot for the fingerprint region of control RBCs corresponding to the α-helical structure of hemoglobin, shows that oxRBCs and FDoxRBCs have conformational changes in the protein secondary structure to β-pleated sheets and β-turns. Finally, the freeze-drying process did not appear to compound or induce additional changes. In this context, FDoxRBCs could become a stable source of reagent RBCs for pre-transfusion blood serology testing. The synchrotron FTIR microspectroscopic live-cell protocol provides a powerful analytical tool to characterize and contrast the effects of different treatments on RBC chemical composition at the single cell level.</p

    Pattern formation in drying blood drops

    Get PDF
    Funder: Australian Government Research Training Program (RTP) Scholarship.Funder: HaemokinesisPatterns in dried droplets are commonly observed as rings left after spills of dirty water or coffee have evaporated. Patterns are also seen in dried blood droplets and the patterns have been shown to differ from patients afflicted with different medical conditions. This has been proposed as the basis for a new generation of low-cost blood diagnostics. Before these diagnostics can be widely used, the underlying mechanisms leading to pattern formation in these systems must be understood. We analyse the height profile and appearance of dispersions prepared with red blood cells (RBCs) from healthy donors. The red cell concentrations and diluent were varied and compared with simple polystyrene particle systems to identify the dominant mechanistic variables. Typically, a high concentration of non-volatile components suppresses ring formation. However, RBC suspensions display a greater volume of edge deposition when the red cell concentration is higher. This discrepancy is caused by the consolidation front halting during drying for most blood suspensions. This prevents the standard horizontal drying mechanism and leads to two clearly defined regions in final crack patterns and height profile. This article is part of a discussion meeting issue ‘A cracking approach to inventing new tough materials: fracture stranger than friction’

    Characteristics of unsteady total pressure distortion for a complex aero-engine intake duct

    Get PDF
    Some types of aero-engine intake systems are susceptible to the generation of secondary flows with high levels of total pressure fluctuations. The resulting peak distortion events may exceed the tolerance level of a given engine, leading to handling problems or to compressor surge. Previous work used distortion descriptors for the assessment of intake-engine compatibility to characterise modestly curved intakes where most of the self-generated time-dependent distortion was typically found to be dominated by stochastic events. This work investigates the time-dependent total pressure distortion at the exit of two high off-set diffusing S-duct intakes with the aim of establishing whether this classical approach, or similar, could be applied in these instances. The assessment of joint probability maps for time dependent radial and circumferential distortion metrics demonstrated that local ring-based distortion descriptors are more appropriate to characterise peak events. Extreme Value Theory (EVT) was applied to predict the peak distortion levels that could occur for a test time beyond the experimental data set available. Systematic assessments of model sensitivities to the de-clustering frequency, the number of exceedances and sample time length were used to extend the EVT application to local distortion descriptors and to provide guidelines on its usage

    Analysis of bifurcations in a Bénard-Marangoni problem: Gravitational effects

    Get PDF
    This article studies the linear stability of a thermoconvective problem in an annular domain for different Bond (capillarity or buoyancy effects) and Biot (heat transfer) numbers for two set of Prandtl numbers (viscosity effects). The flow is heated from below, with a linear decreasing horizontal temperature profile from the inner to the outer wall. The top surface of the domain is open to the atmosphere and the two lateral walls are adiabatic. Different kind of competing solutions appear on localized zones of the Bond-Biot plane. The boundaries of these zones are made up of co-dimension two points. A co-dimension four point has been found for the first time. The main result found in this work is that in the range of low Prandtl number studied and in low-gravity conditions, capillarity forces control the instabilities of the flow, independently of the Prandtl number. (C) 2014 Elsevier Ltd. All rights reserved.Hoyas Calvo, S.; Fajardo Peña, P.; Gil Megías, A.; Pérez Quiles, MJ. (2014). Analysis of bifurcations in a Bénard-Marangoni problem: Gravitational effects. International Journal of Heat and Mass Transfer. 73:33-41. doi:10.1016/j.ijheatmasstransfer.2014.01.061S33417

    “El Sexo no es Malo”: Maternal Values Accompanying Contraceptive Use Advice to Young Latina Adolescent Daughters

    Get PDF
    In this study, we utilized observational methods to identify maternal values and concerns accompanying contraceptive use advice in Latina mother–daughter sexuality conversations. The sample included non-sexually active early adolescents around 12 years of age and their mostly Spanish-speaking Latina mothers. Videotaped conversations were coded for the prevalence of messages related to four sexual values (abstinence, delay sex until older, sex is “normal”, sex is “improper”) and concerns about pregnancy and STD transmission. We examined whether the duration of time spent conversing about these messages was associated with participant characteristics, general communication openness, and the amount of time the dyads spent discussing contraceptive use. Results indicated that Latina mothers who had fewer years of education and lower family income talked longer to their daughters about the need to delay sex, avoid risky situations that would increase their chances of getting pregnant or acquiring an STD, and engage in self-protective practices. Less perceived openness in general communication as reported by both the mothers and the daughters was associated with increased time discussing that sex is improper. Although the duration of contraceptive use messages was brief, mothers and daughters who discussed the fact that sex is normal, and who communicated more about the importance of delaying sex, talked longer about contraceptive use practices compared to mothers and daughters who engaged in minimal discussion of these sexual values

    Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection

    Get PDF
    Microbiota provide their hosts with a range of beneficial services, including defense from external pathogens. However, host-associated microbial communities themselves can act as a source of opportunistic pathogens depending on the environment. Marine poikilotherms and their microbiota are strongly influenced by temperature, but experimental studies exploring how temperature affects the interactions between both parties are rare. To assess the effects of temperature, temperature stress and infection on diversity, composition and dynamics of the hemolymph microbiota of Pacific oysters (Crassostrea gigas), we conducted an experiment in a fully-crossed, three-factorial design, in which the temperature acclimated oysters (8 or 22 °C) were exposed to temperature stress and to experimental challenge with a virulent Vibrio sp. Strain. We monitored oyster survival and repeatedly collected hemolymph of dead and alive animals to determine the microbiome composition by 16s rRNA gene amplicon pyrosequencing. We found that the microbial dynamics and composition of communities in healthy animals (including infection survivors) were significantly affected by temperature and temperature stress, but not by infection. The response was mediated by changes in the incidence and abundance of operational taxonomic units (OTUs) and accompanied by little change at higher taxonomic levels, indicating dynamic stability of the hemolymph microbiome. Dead and moribund oysters, on the contrary, displayed signs of community structure disruption, characterized by very low diversity and proliferation of few OTUs. We can therefore link short-term responses of host-associated microbial communities to abiotic and biotic factors and assess the potential feedback between microbiota dynamics and host survival during disease

    Glutathione Is a Key Player in Metal-Induced Oxidative Stress Defenses

    Get PDF
    Since the industrial revolution, the production, and consequently the emission of metals, has increased exponentially, overwhelming the natural cycles of metals in many ecosystems. Metals display a diverse array of physico-chemical properties such as essential versus non-essential and redox-active versus non-redox-active. In general, all metals can lead to toxicity and oxidative stress when taken up in excessive amounts, imposing a serious threat to the environment and human health. In order to cope with different kinds of metals, plants possess defense strategies in which glutathione (GSH; γ-glu-cys-gly) plays a central role as chelating agent, antioxidant and signaling component. Therefore, this review highlights the role of GSH in: (1) metal homeostasis; (2) antioxidative defense; and (3) signal transduction under metal stress. The diverse functions of GSH originate from the sulfhydryl group in cysteine, enabling GSH to chelate metals and participate in redox cycling
    corecore