61 research outputs found

    Selective glycoprotein detection through covalent templating and allosteric click-imprinting

    Get PDF
    A hierarchical bottom-up route exploiting reversible covalent interactions with boronic acids and so-called click chemistry for selective glycoprotein detection is described. The self-assembled and imprinted surfaces confer high binding affinities, nanomolar sensitivity, exceptional glycoprotein specificity and selectivity.</p

    Electronic communication of cells with a surface mediated by boronic acid saccharide interactions

    Get PDF
    The fabrication of a molecularly tailored surface functionalised with a saccharide binding motif, a phenyl boronic acid derivative is reported.The functionalised surface facilitated the transfer of electrons, via unique electronic interactions mediated by the presence of the boronic acid, from a macrophage cell line. This is the first example of eukaryotic cellular-electrical communication mediated by the binding of cells via their cell–surface saccharide units

    Phosphino-Triazole Ligands for Palladium-Catalyzed Cross-Coupling

    Get PDF
    Twelve 1,5-disubtituted and fourteen 5-substituted 1,2,3-triazole derivatives bearing diaryl or dialkyl phosphines at the 5-position were synthesized and used as ligands for palladium-catalyzed Suzuki–Miyaura cross-coupling reactions. Bulky substrates were tested, and lead-like product formation was demonstrated. The online tool SambVca2.0 was used to assess steric parameters of ligands and preliminary buried volume determination using XRD-obtained data in a small number of cases proved to be informative. Two modeling approaches were compared for the determination of the buried volume of ligands where XRD data was not available. An approach with imposed steric restrictions was found to be superior in leading to buried volume determinations that closely correlate with observed reaction conversions. The online tool LLAMA was used to determine lead-likeness of potential Suzuki–Miyaura cross-coupling products, from which 10 of the most lead-like were successfully synthesized. Thus, confirming these readily accessible triazole-containing phosphines as highly suitable ligands for reaction screening and optimization in drug discovery campaigns

    The PULSAR Specialist Care protocol: a stepped-wedge cluster randomized control trial a training intervention for community mental health teams in recovery-oriented practice

    Get PDF
    Background: Recovery features strongly in Australian mental health policy; however, evidence is limited for the efficacy of recovery-oriented practice at the service level. This paper describes the Principles Unite Local Services Assisting Recovery (PULSAR) Specialist Care trial protocol for a recovery-oriented practice training intervention delivered to specialist mental health services staff. The primary aim is to evaluate whether adult consumers accessing services where staff have received the intervention report superior recovery outcomes compared to adult consumers accessing services where staff have not yet received the intervention. A qualitative sub-study aims to examine staff and consumer views on implementing recovery-oriented practice. A process evaluation sub-study aims to articulate important explanatory variables affecting the interventions rollout and outcomes. Methods: The mixed methods design incorporates a two-step stepped-wedge cluster randomized controlled trial (cRCT) examining cross-sectional data from three phases, and nested qualitative and process evaluation sub-studies. Participating specialist mental health care services in Melbourne, Victoria are divided into 14 clusters with half randomly allocated to receive the staff training in year one and half in year two. Research participants are consumers aged 18-75 years who attended the cluster within a previous three-month period either at baseline, 12 (step 1) or 24 months (step 2). In the two nested sub-studies, participation extends to cluster staff. The primary outcome is the Questionnaire about the Process of Recovery collected from 756 consumers (252 each at baseline, step 1, step 2). Secondary and other outcomes measuring well-being, service satisfaction and health economic impact are collected from a subset of 252 consumers (63 at baseline; 126 at step 1; 63 at step 2) via interviews. Interview based longitudinal data are also collected 12 months apart from 88 consumers with a psychotic disorder diagnosis (44 at baseline, step 1; 44 at step 1, step 2). cRCT data will be analyzed using multilevel mixed-effects modelling to account for clustering and some repeated measures, supplemented by thematic analysis of qualitative interview data. The process evaluation will draw on qualitative, quantitative and documentary data. Discussion: Findings will provide an evidence-base for the continued transformation of Australian mental health service frameworks toward recovery

    Efficacy of Memantine for Agitation in Alzheimer’s Dementia: A Randomised Double-Blind Placebo Controlled Trial

    Get PDF
    Agitation in Alzheimer's disease (AD) is common and associated with poor patient life-quality and carer distress. The best evidence-based pharmacological treatments are antipsychotics which have limited benefits with increased morbidity and mortality. There are no memantine trials in clinically significant agitation but post-hoc analyses in other populations found reduced agitation. We tested the primary hypothesis, memantine is superior to placebo for clinically significant agitation, in patients with moderate-to-severe AD

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    • 

    corecore