1,131 research outputs found

    NOx Removal Catalysis

    Get PDF
    This paper surveys the most important catalytic emission control technologies being employed or near commercialization for the removal of nitrogen oxides (NOx) from the exhausts of mobile sources under lean conditions. Urea/Ammonia-SCR systems and NOx Storage/Reduction (NSR) catalysts will be addressed, with particular attention to the specific demands related to the mobile applications. In the first part of the paper the transient kinetics of standard de-NOx SCR reaction over commercial V-W/Ti SCR catalysts and the dynamic model of the honeycomb reactor will be addressed. Then the validation of the dynamic model with integral reactor measurements and full-scale transients in vehicles will be illustrated. The second part presents a complete and quantitative understanding of the NOx storage chemistry of a Pt-Ba/Al2O3 “Lean NOx Trap” catalyst

    Application of V2O5/WO3/TiO2 for Resistive-Type SO2 Sensors

    Get PDF
    A study on the application of V2O5/WO3/TiO2 (VWT) as the sensitive material for resistive-type SO2 sensor was conducted, based on the fact that VWT is a well-known catalyst material for good selective catalytic nitrogen oxide reduction with a proven excellent durability in exhaust gases. The sensors fabricated in this study are planar ones with interdigitated electrodes of Au or Pt. The vanadium content of the utilized VWT is 1.5 or 3.0 wt%. The resistance of VWT decreases with an increasing SO2 concentration in the range from 20 ppm to 5,000 ppm. The best sensor response to SO2 occurs at 400 °C using Au electrodes. The sensor response value is independent on the amount of added vanadium but dependent on the electrode materials at 400 °C. These results are discussed and a sensing mechanism is discussed

    Pyrazolate-Bridged NHC Cyclometalated [Pt2] Complexes and [Pt2Ag(PPh3]+ Clusters in Electroluminescent Devices

    Get PDF
    he ionic transition metal complexes (iTMCs) [{Pt(C∧C*)(ÎŒ-Rpz)}2Ag(PPh3)]X (HC∧C* = 1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1H-imidazole-2-ylidene, X = ClO4/PF6; Rpz = pz 1a/2a, 4-Mepz 1b/2b, and 3,5-dppz 1c/2c) were prepared from the neutral [{Pt(C∧C*)(ÎŒ-Rpz)}2] (Rpz = pz A, 4-Mepz B, and 3,5-dppz C) and fully characterized. The “Ag(PPh3)” fragment is in between the two square-planar platinum units in an “open book” disposition and bonded through two Pt–Ag donor–acceptor bonds, as shown by X-ray diffraction (dPt–Ag ∌ 2.78 Å, 1a–1c). 195Pt{1H} and 31P{1H} NMR confirmed that these solid-state structures remain in solution. Photoluminescence studies and theoretical calculations on 1a, were performed. The diphenylpyrazolate derivatives show the highest photoluminescence quantum yield (PLQY) in the solid state. Therefore, 2c and its neutral precursor C were selected as active materials on light-emitting devices. OLEDs fabricated with C showed a turn-on voltage of 3.2 V, a luminance peak of 21,357 cd m–2 at 13 V, and a peak current efficiency of 28.8 cd A–1 (9.5% EQE). They showed a lifetime t50 of 15.7 h. OLEDs using 2c showed a maximum luminance of 114 cd m–2, while LECs exhibited a maximum luminance of 20 cd m–2 and a current efficiency of around 0.2 cd A–1, with a t50 value of 50 min

    The oxycoal process with cryogenic oxygen supply

    Get PDF
    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly ash or the deposits that form. In particular, detailed nitrogen and sulphur chemistry was investigated by combustion tests in a laboratory-scale facility. Oxidant staging, in order to reduce NO formation, turned out to work with similar effectiveness as for conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was found, as expected. However, the H2S concentration in the combustion atmosphere increased as well. Further results were achieved with a pilot-scale test facility, where acid dew points were measured and deposition probes were exposed to the combustion environment. Besides CO2 and water vapour, the flue gas contains impurities like sulphur species, nitrogen oxides, argon, nitrogen, and oxygen. The CO2 liquefaction is strongly affected by these impurities in terms of the auxiliary power requirement and the CO2 capture rate. Furthermore, the impurity of the liquefied CO2 is affected as well. Since the requirements on the liquid CO2 with regard to geological storage or enhanced oil recovery are currently undefined, the effects of possible flue gas treatment and the design of the liquefaction plant are studied over a wide range

    Study of N2O formation over Rh- and Pt-based LNT catalysts

    Get PDF
    In this paper, mechanistic aspects involved in the formation of N2O over Pt-BaO/Al2O3 and Rh-BaO/Al2O3 model NOx Storage-Reduction (NSR) catalysts are discussed. The reactivity of both gas-phase NO and stored nitrates was investigated by using H2 and NH3 as reductants. It was found that N2O formation involves the presence of gas-phase NO, since no N2O is observed upon the reduction of nitrates stored over both Pt- and Rh-BaO/Al2O3 catalyst samples. In particular, N2O formation involves the coupling of undissociated NO molecules with N-adspecies formed upon NO dissociation onto reduced Platinum-Group-Metal (PGM) sites. Accordingly, N2O formation is observed at low temperatures, when PGM sites start to be reduced, and disappears at high temperatures where PGM sites are fully reduced and complete NO dissociation takes place. Besides, N2O formation is observed at lower temperatures with H2 than with NH3 in view of the higher reactivity of hydrogen in the reduction of the PGM sites and onto Pt-containing catalyst due to the higher reducibility of Pt vs. Rh

    Dual Mode NOx Sensor: Measuring Both the Accumulated Amount and Instantaneous Level at Low Concentrations

    Get PDF
    The accumulating-type (or integrating-type) NOx sensor principle offers two operation modes to measure low levels of NOx: The direct signal gives the total amount dosed over a time interval and its derivative the instantaneous concentration. With a linear sensor response, no baseline drift, and both response times and recovery times in the range of the gas exchange time of the test bench (5 to 7 s), the integrating sensor is well suited to reliably detect low levels of NOx. Experimental results are presented demonstrating the sensor’s integrating properties for the total amount detection and its sensitivity to both NO and to NO2. We also show the correlation between the derivative of the sensor signal and the known gas concentration. The long-term detection of NOx in the sub-ppm range (e.g., for air quality measurements) is discussed. Additionally, a self-adaption of the measurement range taking advantage of the temperature dependency of the sensitivity is addressed

    On the Mn promoted synthesis of higher alcohols over Cu derived ternary catalysts

    Get PDF
    This work provides insight into the promotional effect of Mn on the synthesis of higher alcohols over Cu-based ternary catalysts through XPS and in situ DRIFTS and powder XRD. These revealed that the surface of K-CuZnAl, an active catalyst for CO hydrogenation to methanol, possesses Cu+ sites able to adsorb CO associatively and Cu0 sites for H2 dissociation. Here we show that exchanging Zn with Mn induces a strong interaction between Cu and Mn that decreases the overall copper surface area and increases the Cu+/Cu0 ratio. In situ DRIFTS showed that electronic modification of Cu+ sites by proximate Mn favors dissociative CO chemisorption, resulting in the formation of C and O adspecies that are precursors to higher alcohol formation. The decrease in metallic copper limits available sites for H2 dissociation, and hence retards the hydrogenation of oxygen-containing intermediates, thereby further promoting carbon-chain growth. Mn also increases the dispersion of K promoter over the catalyst surface, providing abundant basic sites for aldol-type condensation reactions to branched oxygenates
    • 

    corecore