87 research outputs found

    Prosody and the Resolution of Pronominal Anaphora

    Get PDF
    In this paper, we investigate the acoustic prosodic marking of demonstrative and personal pronouns in taskoriented dialog. Although it has been hypothesized that acoustic marking affects pronoun resolution, we find that the prosodic information extracted from the data is not sufficient to predict antecedent type reliably. Interspeaker variation accounts for much of the prosodic variation that we find in our data. We conclude that prosodic cues should be handled with care in robust, speakerindependent dialog systems. 1 Introduction Previous work on anaphora resolution has yielded a rich basis of theories and heuristics for finding antecedents. However, most research to date has neglected an important potential cue that is only available in spoken data: prosody. Prosodic marking can be used to change the antecedent of a pronoun, as demonstrated by this classic example from Lakoff (1971) (capitals indicate a pitch accent): (1) John i called Jim j a Republican, then he i insulted him j ..

    The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    Get PDF
    Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey

    Get PDF
    Background: Decisions about the continued need for control measures to contain the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rely on accurate and up-to-date information about the number of people testing positive for SARS-CoV-2 and risk factors for testing positive. Existing surveillance systems are generally not based on population samples and are not longitudinal in design. Methods: Samples were collected from individuals aged 2 years and older living in private households in England that were randomly selected from address lists and previous Office for National Statistics surveys in repeated crosssectional household surveys with additional serial sampling and longitudinal follow-up. Participants completed a questionnaire and did nose and throat self-swabs. The percentage of individuals testing positive for SARS-CoV-2 RNA was estimated over time by use of dynamic multilevel regression and poststratification, to account for potential residual non-representativeness. Potential changes in risk factors for testing positive over time were also assessed. The study is registered with the ISRCTN Registry, ISRCTN21086382. Findings: Between April 26 and Nov 1, 2020, results were available from 1 191 170 samples from 280327 individuals; 5231 samples were positive overall, from 3923 individuals. The percentage of people testing positive for SARS-CoV-2 changed substantially over time, with an initial decrease between April 26 and June 28, 2020, from 0·40% (95% credible interval 0·29–0·54) to 0·06% (0·04–0·07), followed by low levels during July and August, 2020, before substantial increases at the end of August, 2020, with percentages testing positive above 1% from the end of October, 2020. Having a patient facing role and working outside your home were important risk factors for testing positive for SARS-CoV-2 at the end of the first wave (April 26 to June 28, 2020), but not in the second wave (from the end of August to Nov 1, 2020). Age (young adults, particularly those aged 17–24 years) was an important initial driver of increased positivity rates in the second wave. For example, the estimated percentage of individuals testing positive was more than six times higher in those aged 17–24 years than in those aged 70 years or older at the end of September, 2020. A substantial proportion of infections were in individuals not reporting symptoms around their positive test (45–68%, dependent on calendar time. Interpretation: Important risk factors for testing positive for SARS-CoV-2 varied substantially between the part of the first wave that was captured by the study (April to June, 2020) and the first part of the second wave of increased positivity rates (end of August to Nov 1, 2020), and a substantial proportion of infections were in individuals not reporting symptoms, indicating that continued monitoring for SARS-CoV-2 in the community will be important for managing the COVID-19 pandemic moving forwards

    Resolving Pronominal Reference to Abstract Entities

    No full text
    Entities Donna K. Byron Department of Computer Science P.O. Box 270226 Rochester, NY 14627 [email protected] Abstract This paper describes PHORA, a technique for resolving pronominal reference to either indi- vidual or abstract entities. It defines processes for evoking abstract referents from discourse and for resolving both demonstrative and personal pronouns. It successfully interprets 72% of test pronouns, compared to 37% for a lead- ing technique without these features
    corecore