117 research outputs found

    Parameter inference in mechanistic models of cellular regulation and signalling pathways using gradient matching

    Get PDF
    A challenging problem in systems biology is parameter inference in mechanistic models of signalling pathways. In the present article, we investigate an approach based on gradient matching and nonparametric Bayesian modelling with Gaussian processes. We evaluate the method on two biological systems, related to the regulation of PIF4/5 in Arabidopsis thaliana, and the JAK/STAT signal transduction pathway

    Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis.

    Get PDF
    Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses

    An observational study to assess validity and reliability of smartphone sensor-based gait and balance assessments in multiple sclerosis: Floodlight GaitLab protocol

    Get PDF
    Background Gait and balance impairments are often present in people with multiple sclerosis (PwMS) and have a significant impact on quality of life and independence. Gold-standard quantitative tools for assessing gait and balance such as motion capture systems and force plates usually require complex technical setups. Wearable sensors, including those integrated into smartphones, offer a more frequent, convenient, and minimally burdensome assessment of functional disability in a home environment. We developed a novel smartphone sensor-based application (Floodlight) that is being used in multiple research and clinical contexts, but a complete validation of this technology is still lacking. Methods This protocol describes an observational study designed to evaluate the analytical and clinical validity of Floodlight gait and balance tests. Approximately 100 PwMS and 35 healthy controls will perform multiple gait and balance tasks in both laboratory-based and real-world environments in order to explore the following properties: (a) concurrent validity of the Floodlight gait and balance tests against gold-standard assessments; (b) reliability of Floodlight digital measures derived under different controlled gait and balance conditions, and different on-body sensor locations; (c) ecological validity of the tests; and (d) construct validity compared with clinician- and patient-reported assessments. Conclusions The Floodlight GaitLab study (ISRCTN15993728) represents a critical step in the technical validation of Floodlight technology to measure gait and balance in PwMS, and will also allow the development of new test designs and algorithms

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Markov chain Monte Carlo with Gaussian processes for fast parameter estimation and uncertainty quantification in a 1D fluid‐dynamics model of the pulmonary circulation

    Get PDF
    The past few decades have witnessed an explosive synergy between physics and the life sciences. In particular, physical modelling in medicine and physiology is a topical research area. The present work focuses on parameter inference and uncertainty quantification in a 1D fluid‐dynamics model for quantitative physiology: the pulmonary blood circulation. The practical challenge is the estimation of the patient‐specific biophysical model parameters, which cannot be measured directly. In principle this can be achieved based on a comparison between measured and predicted data. However, predicting data requires solving a system of partial differential equations (PDEs), which usually have no closed‐form solution, and repeated numerical integrations as part of an adaptive estimation procedure are computationally expensive. In the present article, we demonstrate how fast parameter estimation combined with sound uncertainty quantification can be achieved by a combination of statistical emulation and Markov chain Monte Carlo (MCMC) sampling. We compare a range of state‐of‐the‐art MCMC algorithms and emulation strategies, and assess their performance in terms of their accuracy and computational efficiency. The long‐term goal is to develop a method for reliable disease prognostication in real time, and our work is an important step towards an automatic clinical decision support system

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
    • 

    corecore