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Abstract

We present a novel approach, the Local Edge Machine, for the inference of regulatory interactions directly from
time-series gene expression data. We demonstrate its performance, robustness, and scalability on in silico datasets
with varying behaviors, sizes, and degrees of complexity. Moreover, we demonstrate its ability to incorporate biological
prior information and make informative predictions on a well-characterized in vivo system using data from budding
yeast that have been synchronized in the cell cycle. Finally, we use an atlas of transcription data in a mammalian
circadian system to illustrate how the method can be used for discovery in the context of large complex networks.
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Background
Temporally dynamic gene expression programs have
been observed in a wide variety of organisms. In some
instances, it is believed that the observed temporal
dynamics are an emergent property of underlying tran-
scription networks, which consist of interacting collec-
tions of transcription factors (TFs) [1–3]. Although it
is difficult to assay such transcription networks directly,
high-throughput technologies allow the measurement of
transcription levels in time-course experiments [4, 5].
However, using such time-course transcriptome data to
infer the structure of transcription networks is considered
a major problem in computational biology [6, 7]. To date,
many inference methods have been proposed for recon-
structing gene regulatory networks [8, 9], but successful
network inference directly from time-series datasets has
remained elusive [8]. In fact, practicing systems biolo-
gists continue to rely on the manual curation of network
models [2, 3, 10–12]. Indeed, the network inference prob-
lem persists in systems biology, despite an abundance of
regulatory evidence in the form of TF binding experi-
ments, genetic screens for candidate nodes, and mutant
expression profiling experiments.
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We are particularly interested in the functional com-
ponents of networks (rather than the most expansive or
inclusive network), where the function of the network is
manifested by the dynamics of the network. By functional
network, we mean a network such that an experimental
perturbation will likely alter the dynamical phenotype of
the network. One of the best examples of a large func-
tional network is the mammalian circadian oscillator, for
which the current core network contains about 30 nodes.
Previous methods for network inference from dynam-

ics data may be broadly classified according to the tools
involved. Many methods rely on linear statistical mod-
els called vector auto-regressive models, including meth-
ods based on Granger causality [13–15]. Other pop-
ular approaches employ sparse linear regression and
related techniques [16–18], calculations of mutual infor-
mation [19], or dynamic Bayesian networks [20–23]. Most
recently, several studies have developed inference meth-
ods based on nonlinear ordinary differential equations
(ODEs) for the chemical kinetics and a Bayesian formal-
ism on the network structure [24–27]. This article fits into
the latter class and extends some of those ideas as follows.
Beginning with time-series gene expression data, the

Local Edge Machine (LEM) seeks to find functional net-
work models capable of generating the dynamic behavior
of the data (Fig. 1). This approach begins with nonlin-
ear kinetic equations, which provide realistic models of
transcription and facilitate interpretability of the resulting
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Fig. 1 Discovering underlying transcriptional networks from time-series gene expression data. The LEM inference method utilizes time-series gene
expression data (left) to estimate parsimonious network structures matching the observed dynamics (right). In general, LEM will test every input
node as a possible regulator of all others. These LEM outputs may be refined by biological prior information (center) within a Bayesian framework to
generate plausible network models (right). AU arbitrary units, LEM Local Edge Machine

models. Furthermore, LEM operates in a Bayesian frame-
work, which accounts for uncertainty, prior information,
and robustness in the parameter space. It uses a local
approximation to the system of differential equations that
relies on sparse priors, which localizes uncertainty and
renders the algorithm scalable to complex networks. One
interesting feature of our approach is that it provides a
coherent framework for modeling both the local motifs
(e.g., edges) within the network and the global dynamical
behavior of the system. Indeed, using the locally inferred
network structure and parameters, LEM produces a com-
plete system of ODEs capable of generating dynamic pre-
dictions. Additionally, our approach differs from previous
methods in its reliance on the equivalent formulation of
ODEs as integral equations, which improves robustness
to noise, and in its use of a Laplace approximation of
the posterior, which reduces the computational cost by
eliminating the need for any Markov chain Monte Carlo
(MCMC). In validation studies on both in silico and in
vivo data, our method outperforms previously reported
methods. We anticipate that this method will be used as
a tool in network or pathway discovery settings in which
high-fidelity time-course data are available. As themethod
appears to make informative predictions, we view it as
providing a substantial reduction of the hypothesis space
that an experimentalist must search [28].
The computational task of inferring network connec-

tions from steady-state TF perturbation experiments
(gene knockouts or overexpression) has been attempted
[8]; however, it is difficult to infer causality, directionality,
and the function of network edges from single-point mea-
surements. LEM attempts to overcome these challenges
by basing edge predictions on dynamics data. Importantly,
though, the abundance of data from perturbation experi-
ments and other regulatory evidence from a given model
organism could be used throughout the process of LEM
network inference in several ways. Indeed, it may be used
to inform the selection of nodes chosen to run through
LEM, to inform the structure of the prior information

used by the algorithm, and to evaluate the output of the
algorithm. In particular, the LEM framework allows for
the incorporation of a wide variety of evidence in the form
of prior information, including genetic evidence (e.g., gene
expression changes in TF targets upon TF knockout or
overexpression), physical interaction evidence (e.g., high-
throughput genomics experiments, such as ChIP tech-
niques, and database compilation, such as ENCODE [29]),
and direct regulation evidence (e.g., the fast-on technique
to identify direct TF targets [30]). In our yeast cell-cycle
analysis, we include TF function (activator, repressor, or
unknown; see Additional files 1 and 2) as prior infor-
mation to improve LEM inference further. Additionally,
we use the available regulatory evidence from various TF
binding and genetics experiments (see Additional file 3)
to evaluate LEM predictions. We view the development
and testing of specific prior distributions based on current
regulation evidence as an important direction for future
work.

Methods
Description of the method
Given a set of genes deemed to be potentially important
for network function, LEM takes a Bayesian approach to
answer the following question: of all possible regulators,
which regulator and regulatory logic (activation or repres-
sion) best models the expression dynamics of each gene?
Here, we provide a brief description of how the LEM
algorithm models the gene expression of each node and
scores each possible regulation in the network. For a com-
plete description of the mathematical and computational
details, see Additional file 1: Sections 1–4.
Consider a gene regulatory network with a set of N

nodes, N = {X1, . . . ,XN }. For i = 1, . . . ,N , we let Xi(t)
denote the expression level of gene Xi at time t. The data,
denoted by D, consist of the observed expression levels of
the N nodes at T time points, {tj}Tj=1.
According to our model, the data are generated accord-

ing to a system of ODEs, possibly observed with noise.
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More specifically, for the target Xi, our model is that Xi
satisfies

dXi
dt

= αifi(X(t)) − βiXi(t) + γi, (1)

where X(t) = (X1(t), . . . ,XN (t)), the function fi : RN →
R governs the type of regulation that Xi experiences,
αi > 0 represents the strength of the regulation, βi ≥ 0
represents the rate of degradation of Xi, and γi ≥ 0
represents the basal rate of production of Xi. In general,
stochastic effects play a significant role in the dynamics
of any individual cell, and such considerations lead one
to stochastic differential equations. However, we consider
data generated by averaging expression levels over many
(∼108) individual cells, and we, therefore, assume that the
stochastic effects are insignificant, leading to our use of
ODEs.
We use Hill function kinetics to model activation and

repression of the target node. Equations of this type are
not intended to model each individual aspect of regu-
lation explicitly. Rather, they are intended to subsume
multiple levels of regulation (e.g., translation, transcrip-
tion, chromatin modification, direct binding, etc.) into a
single equation with relatively few parameters. In general,
one expects biological networks to be sparse [31, 32], and
even in cases where this assumption is broken, we seek to
identify the most dominant components of a regulation in
a given experimental condition. Thus, we consider regula-
tory functions fi of the following forms, which correspond
to regulation by a single gene:

fi(X) =

⎧
⎪⎨

⎪⎩

Xni
j

Kini+Xni
j

(activation by Xj),
Kni
i

Kini+Xni
j

(repression by Xj).
(2)

More complex regulatory functions fi could be allowed
in the model class if the goal is to infer simultaneous reg-
ulation by multiple genes. However, we choose to restrict
attention to single regulation, since the information con-
tent of time-series datasets at present appears not to sup-
port the substantial increase in complexity of the model
class that would result from inclusion of combinatorial
regulation.
Thus, to specify a system of ODEs completely, as in

Eq. 1, for each node Xi, one must select a regulator Xj,
a type of regulation (activation or repression), and a vec-
tor of real-valued parameters (αi, ni,Ki,βi, γi). We refer to
triples of the form (Xi,Xj, a) or (Xi,Xj, r) as edges, where
we interpret (Xi,Xj, a) as the relationship that Xi is acti-
vated by Xj and (Xi,Xj, r) denotes that Xi is repressed by
Xj. Note that these edges are both signed and directed.
The LEM inference method first involves making a local

approximation, which allows us to infer the regulation of
each node separately, rather than all at once (see Addi-
tional file 1: Section 2). To infer the regulation of the target

X (here we drop the subscript i from the above notation
without introducing ambiguity), LEM takes a Bayesian
approach that relies on the Gibbs posterior principle
[33, 34] and a Laplacian approximation in the computa-
tion of the posterior distribution.
In general, if M is a model (among several) and D is a

dataset, then Bayes’s rule yields a posterior probability of
M given the data D:

p(M|D) = p(D|M)π(M)

p(D)
∝ p(D|M)π(M).

Here p(D|M) is the likelihood of the data D given the
model M, π is a probability distribution on the possible
models, called the prior distribution, and p(D) is the like-
lihood of D (averaged over all the possible models). If one
interprets the prior distribution as our belief in the verac-
ity of each model prior to generation of the data, then
the posterior distribution represents the optimal way to
update our beliefs in light of the data. If M requires an
additional choice of parameter θ to be a fully generative
model, the posterior distribution may be written as an
integral over θ :

p(M|D) ∝
∫

p(D|M, θ)π(M, θ).

For LEM, we formulate the edge inference problem in a
similar manner. Let X be a fixed node and E an edge with
X as the target [i.e., E = (X,Y , a) or E = (X,Y , r) for some
node Y ]. We would like to view E as a model for explain-
ing the behavior of X and employ the Bayesian framework
above to compute its posterior probability. To do so, we
need to specify a prior distribution on the set of possible
models, which in our case is the set of possible edges with
X as the target, and we need a likelihood function. Recall
that in our model, each edge requires an additional choice
of parameter vector θ = (α,β , γ , n,K) (as in Eqs. 1 and
2) in order to specify fully the corresponding differential
equation.
As mentioned in the introduction, the prior distribution

may be set by the user, and there are many opportunities
for integrating other data types in this manner. However,
in our implementation it is set as follows. First, we let π(E)

be the uniform distribution over the possible edges that
have X as a target. For each edge E with X as the target,
we select a priori bounds on each of the parameters in
θE , resulting in a region RE (contained in R

5) of biolog-
ically reasonable parameter values (see Additional file 1:
Section 3). Once these bounds are selected, we choose
the maximum entropy prior distribution subject to these
bounds, which is the least informative prior on RE and
ensures that we do not unnecessarily bias the result. This
distribution is

π(E, θ) = 1
s · Vol(RE)

,
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where s is the number of edges with X as target and
Vol(RE) is the volume of RE .
With the prior distribution set, we now turn attention to

the likelihood. In fact, as different experimental protocols
could lead to significantly different noise models, each of
which is likely to be difficult to determine accurately and
precisely, we proceed under the assumption that we do
not have access to a likelihood function. In such cases, the
Gibbs posterior principle [33, 34] states that the optimal
method for updating one’s beliefs in light of the data is to
replace the likelihood p(D|M, θ) by

exp (−�(D,E, θ)) ,

where �(D,E, θ) is an appropriately chosen loss function.
We specify a loss function �(D,E, θ) as follows. For a triple
(D,E, θ), define the function F :[ t1, tT ]→ R on the points
{tj}Tj=1 by

F(tj) = αf (X(tj)) − βX(tj) + γ ,

and then extend F to the whole interval [ t1, tT ] by linearly
interpolating between these values. That is, if t = utj +
(1 − u)tj+1 for some j < T and u ∈ (0, 1), then let F(t) =
uF(tj) + (1 − u)F(tj+1). Now set

X̂(t) =
∫ t

t1
F(s) ds,

and define the loss �(D,E, θ) to be the mean squared error
between the observed values {X(tj)}Tj=1 and the properly
shifted model prediction {X̂(tj)}Tj=1:

�(D,E, θ) = min
c∈R

1
T

T∑

j=1

(
X(tj) − X̂(tj) − c

)2
.

This choice of loss function is effectively equivalent to
the choice of a Gaussian noise model.
With the prior distribution and the loss function

now specified, the (marginal) Gibbs posterior probability
[33, 34] of the edge E given the data is

p(E|D) ∝
∫

RE
exp (−�(D,E, θ))

dθ
s · Vol(RE)

. (3)

As is common in many Bayesian methods, the above
integral does not have a closed-form solution. We choose
to estimate it using a Laplace approximation [35] (see
Additional file 1: Section 3). From this approximation,
one can see that LEM explicitly favors networks whose
dynamics are more robust to a perturbation in the param-
eter space. In principle, one could attempt to compute
other approximations of this integral, including Monte
Carlo approximations. However, we have found that the
Laplace approximation is computationally fast and pro-
duces sufficiently accurate results for our purposes.
Thus, the core output of LEM is N different probabil-

ity distributions—one for each node in the network (see

Additional file 1: Section 3.1). The distribution for node
X should be interpreted as representing our beliefs about
which edge is the dominant regulatory interaction (edge)
controlling the expression of X. There are multiple ways
to obtain a single network from this set of distributions,
the simplest of which is to select the most likely edge from
each distribution.

Results
Validation and testing: in silico and yeast cell-cycle data
To begin testing the capabilities of LEM, we constructed
synthetic three-node networks that produce oscillatory
behaviors under certain parameter sets (Fig. 2a). We used
LEM to estimate the network structure, as well as a
fully parameterized system of differential equations. Here
LEM perfectly reconstructs the networks and produces
parameter estimates for systems of differential equations
that generate essentially the same dynamics as the data
(Fig. 2b, c).
We investigated the scalability of LEM on functional

networks by creating networks with oscillating dynamics
consisting of five, ten, and 20 nodes, in which regula-
tion of several nodes follows complex logical rules, e.g.,
AND gates and OR gates [36, 37] (Fig. 3). Note that
these networks include a considerable model mismatch,
in the sense that complex regulation of individual nodes
appears throughout these networks, despite that LEM
does not directly infer such regulation. See Additional
file 1: Section 9 for details of the construction and param-
eterization of these networks. As seen in the receiver-
operating characteristic (ROC) plots for these examples,
LEM’s performance remains strong as the networks scale
in size and complexity [see Additional file 4 for sam-
ple LEM ROC curves and Additional files 5 and 6 for
LEM area under the curve (AUC) ROC and area under
the precision-recall curve (AUPR) scores on all in silico
networks used for testing].
Comparison of network inference algorithms is itself

a difficult task, as both inputs and outputs of vari-
ous algorithms typically differ in format. Nonetheless,
Table 1 depicts the results of comparisons between LEM
and several other algorithms designed to handle time-
series data (see Additional file 1: Section 5 for details
on how these algorithms were compared). Four of the
algorithms (TD-ARACNE [19], Inferelator [17, 18], Banjo
[20, 21], and Granger Causality [14]), representing dis-
tinct approaches to inference, were selected for com-
parison due to their (or their predecessors’) strong per-
formances in previous testing, including in the DREAM
network inference challenges [8]. Additionally, two more
recent methods, here called Hill-DBN [22] and Jump3
[25], were selected for comparison. TD-ARACNE uses
the information-theoretic concept of mutual information.
Inferelator relies on sparse linear optimization techniques.
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a b c

Fig. 2 LEM recapitulates network structure and dynamics from time-series data. I, II Oscillatory gene expression data were generated in silico from
three-node negative feedback networks (a, dotted lines). LEM uses ordinary differential equations to simulate the dynamics data for each node (a,
solid lines). The parameters output from LEM closely approximate the parameters used to generate the data (b). LEM identifies the most probable
regulation on each node, from which the user can generate a composite network diagram (c). The top regulations identified by LEM reconstruct the
correct network topology for both networks (I in silico 1; II in silico 2). Out of a possible 39 = 19, 683 topologies for three-node networks, LEM
detects subtle differences in gene expression curve shapes to identify correctly a three-node negative feedback loop (I) and the repressilator [49] (II).
AU arbitrary units, LEM Local Edge Machine

a b c

d e f

Fig. 3 LEM inference performance is robust to increasing network size and complexity. Oscillatory gene expression data were generated in silico for
five-, ten-, and 20-node networks (a in silico 3; b in silico 4; c in silico 5, respectively). AUC-ROC scores (d, e, and f) were computed as described in
Additional file 1: Section 5; recall that a random ranking of edges should produce an expected AUC-ROC score of 0.5. AUC area under the curve, LEM
Local Edge Machine, ROC receiver-operating characteristic
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Table 1 LEM outperforms existing network inference algorithms on both in silico and biological data

Network # Nodes LEM (AUC) Inferelator (AUC) Granger Causality (AUC) Hill-DBN (AUC) Jump3 (AUC)

In silico 1 3 1.0000 0.9000 0.7000 0.5000 0.9000

In silico 2 3 1.0000 0.5667 0.8111 0.3667 0.7222

In silico 3 5 0.9900 0.7857 0.7791 0.4003 0.6794

In silico 4 10 0.8884 0.5541 0.5949 0.5131 0.7727

In silico 5 20 0.8781 0.6789 0.7441 0.6770 0.7540

Yeast cell-cycle 1 17 0.8693 0.6705 0.6893 0.6253 0.6481

Network # Nodes LEM (MCC) TD-ARACNE (MCC) Banjo DBN (MCC)

In silico 1 3 1.0000 0.0000 −0.5000

In silico 2 3 1.0000 0.0000 −0.5000

In silico 3 5 0.7379 0.4528 −0.0624

In silico 4 10 0.7463 0.0636 0.0294

In silico 5 20 0.5908 0.2147 0.0086

Yeast cell-cycle 1 17 0.0478 0.0292 −0.0380

Using in silico networks 1–2 (Fig. 2) and 3–5 (Fig. 3), as well as a yeast cell-cycle network (Fig. 4), we compared LEM performance to existing algorithms. AUC-ROC scores
labeled (AUC) were used to compare the performance of LEM to Inferelator, Granger Causality, Hill-DBN and Jump3. Matthew’s correlation coefficient (MCC) was used to
compare LEM to TD-ARACNE and BANJO, which are binary classifiers and do not output numerical scores for network edges. No biological prior information was used for this
comparison. Using dynamics data from each network, LEM better approximates the underlying network model than the other algorithms. See Additional file 1: Section 5 for a
complete explanation of AUC-ROC and MCC scoring
AUC area under the curve, LEM Local Edge Machine,MCC Matthew’s correlation coefficient, ROC receiver-operating characteristic

Banjo and Hill-DBN are dynamic Bayesian network algo-
rithms. Granger Causality involves statistical hypothesis
testing, and Jump3 relies on a non-parametric inference
procedure based on decision trees.
To compare these algorithms, we first used several of

our benchmark datasets of oscillatory dynamics from in
silico networks. Then we examined the performance of
the algorithms on transcriptome data generated from
time-series experiments on synchronized yeast cells [2]
(see Additional file 1: Section 10 for a description of the
data and Additional file 1: Section 11 for a description
of the curation of a yeast cell-cycle network). As LEM
makes more detailed predictions than these algorithms,
we weakened its predictive power to make these compar-
isons. Nonetheless, as shown in Table 1, LEMoutperforms
these algorithms on both in silico and in vivo networks.
To demonstrate the performance of LEM on biological

data, we begin with time-series data collected in the study
of the transcriptional oscillator underlying the yeast cell
cycle [2]. Based on these data, as well as on previously
available data, a tentative network model was previously
manually curated [2]. We created a network consisting
of the previously published network [2] and some other
known targets (see Additional file 7 for the list of genes,
Additional file 1: Section 11 for a discussion, and Addi-
tional files 3 and 8 for almost 100 citations supporting this
network). Taking this network as the gold standard, we
found that the LEM predictions obtained an AUC-ROC
score of 0.8693, indicating that the LEM predictions were
highly informative with respect to the manually curated
network. Indeed, as can be seen in Additional file 9,

the gold standard edges are ranked highly by LEM, even
without the inclusion of any prior information. Recogniz-
ing that all model networks represent an approximation
of the underlying reality and are subject to revision, we
also constructed both smaller (more restrictive) and larger
(more inclusive) networks from the available data (see
Additional files 10, 11, and 12 for the networks, Additional
file 1: Section 11 for a discussion, and Additional files 3
and 8 for citations). We then compared the output of LEM
to these networks, as seen in Additional file 5.
Since LEM takes a Bayesian approach, it also easily

incorporates prior information. For the testing on the
yeast cell-cycle data, we used a simple form of prior infor-
mation: each node should appear exclusively as an acti-
vator or as a repressor. For example, if TF Y is known to
be an activator (repressor) of its target genes, then inclu-
sion of this function as prior information would exclude
any regulation of the form X is repressed (activated) by Y.
Note that this type of restriction appears only according
to the user-defined prior information, and by default a TF
is allowed to appear as both a repressor and an activator
(which appears to be the case in many systems, especially
in mammals [38–41]). To get an idea about the perfor-
mance of LEMwith this type of prior information, we first
simulated this type of prior information with our bench-
mark in silico datasets (see Additional file 1: Section 6 for
details and Additional file 13 for results).
For the yeast cell-cycle networks, we obtained this

prior information from experimental evidence previously
reported in the literature (most of which may be found
in YEASTRACT [42] or SGD [43]); see Additional file 2.
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Inclusion of this prior information yields substantial
improvement in the inference (see Additional files 5 and
14). In particular, in the presence of prior information
about the possible roles played by each node (i.e., acti-
vator or repressor), LEM predictions obtained an AUC-
ROC score of 0.9889 and produced the network drawn in
Fig. 4. Furthermore, partial inclusion of this information
incrementally improves the results (see Additional file 1:
Section 6 and Additional file 15), indicating that LEM is a
useful tool for biologists who only partially understand the
function of important nodes in their network of interest.
Core TFs in the cell-cycle network are under complex reg-
ulation, which is not always captured by LEM. However,
LEM correctly identifies many outputs from cell-cycle
TFs. Thus, given a TF of interest in a gene regulatory net-
work, LEM is a useful tool for scoring probable targets of
that TF based on time-series gene expression data.

Validation and testing: mammalian circadian data
Next, we used LEM to discover new nodes in a com-
plex incomplete biological network. The mammalian cir-
cadian clock is a transcriptional network that regulates
gene expression in tune with the 24-hour light/dark cycle.
While genetics and biochemistry have identified many
core components/nodes of the circadian network, its full
complement of nodes and its topology remain uncharac-
terized. Recently, Zhang and colleagues built an atlas of
circadian transcription from 12 mouse organs and found
that at least 43 % of the protein-coding genes are under
clock control [44]. In this and other data, known clock
genes tend to have the highest amplitude and most statis-
tically significant rhythms [45]. Reasoning that new clock
genes are likely to have similar dynamics, we used LEM to
search these data for new clock genes.

First, we assembled a list of 31 high-confidence core cir-
cadian clock genes (see Additional file 16). Next, we used
a suite of periodicity detection algorithms (see Additional
file 1: Section 12) to find clock-regulated genes in each
of the 12 mouse organs. Reasoning that novel circadian
regulators are likely to regulate the known circadian core
components, we ran LEM to estimate the probability that
each candidate regulates a known clock gene. By summing
these probabilities across all known circadian core com-
ponents in all 12 organs, we calculated a score reflecting
how likely each periodic gene is to regulate known core
components. We selected a threshold of 0.1 for signifi-
cance of this score, identifying 333 potential regulators.
Notably, ten known clock genes were in this list.
Clock genes regulate each other. To winnow down this

list, we used the liver data and found 205 candidates that
were regulated by known clock components (see Addi-
tional file 17). We focused on the liver, as it is the organ
with the strongest regulated circadian rhythms and best
companion datasets (e.g., ChIP-seq data on known clock
components). Known clock genes are TFs, kinases, and
ubiquitin ligases. Reasoning that new components are
likely to be in these classes as well, we filtered the list of
205 genes down to 34 genes in these or other plausible
classes. Based on practical considerations (time and cost),
we chose to conduct functional studies on the ten highest
ranked genes from this list of 34. We consider the other 24
genes to be good candidates for future experimental work.
We used NIH 3T3 fibroblasts with an integrated

PER2:Luc reporter, RNAi, and kinetic luminescence imag-
ing to test the effect of knockdown of each of these
components on clock function in vitro. Rnf152 and
Ppp1r3c were not expressed in NIH 3T3 cells, so we
substituted Nup62 (a nuclear pore complex factor) and

Fig. 4 Using data from the budding yeast Saccharomyces cerevisiae and biological priors, LEM identifies a core cell-cycle transcription factor network.
The topology of the yeast cell-cycle network was manually curated using literature evidence (see Additional file 1: Section 11). We ran LEM with
biological prior information (see Additional file 1: Table 2), and we considered an edge to be output by LEM if had a posterior probability of at least
0.4. Edges present in both the cell-cycle network and the LEM output appear in bold. Edges that appear in the cell-cycle network but not in the LEM
output are dashed. The edge that appears in the LEM output but not in the cell-cycle network is dash-dotted. LEM Local Edge Machine, YCC yeast cell
cycle
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Fus (a DNA/RNA binding protein). Five out of these
ten knockdowns led to significant changes in circa-
dian period or loss of circadian rhythms (see Additional
file 18 for results), and four of these five remain signifi-
cant after multiple hypothesis correction (see Additional
file 19), indicating their requirement for normal circadian
rhythms in 3T3 cells. An earlier whole-genome screen
in a cell model found knockdown of ∼2.5 % of genes
had circadian rhythm phenotypes including shortened
or lengthened period and arrhythmicity [46], suggesting
LEM provided a significant enrichment over background
(Fisher’s exact test gives a p value of 1.089 × 10−5 after
multiple hypothesis correction). Interestingly, Ankrd23,
a poorly characterized globular protein, was found to
be critical for circadian rhythmicity, as Ankrd23 knock-
downs were arrhythmic (see Fig. 5), the most profound
phenotype observed. Taken together, these results show
how LEM can be combined with biological information
and functional validation to find causal nodes in complex
biological networks.

Further validation and testing: noise, partial information,
and computational resources
In addition to the studies described above, we used in sil-
ico networks to test the performance of LEM with respect
to changes in several other qualities of the data: noise [47],
incomplete prior information, and non-periodic systems.
To test for robustness against noise, we added truncated
Gaussian noise to the data and computed the correspond-
ing AUC-ROC score for LEM. Our tests covered a range
of noise scales, where the largest noise scale was chosen

so that the variance of the noise was 32 % of the variance
of the signal. For a full description of our noise testing and
precise results, see Additional file 1: Section 6 and Addi-
tional file 19. Based on these experiments, it appears that
noise of this type does not greatly reduce the performance
of LEM.
We also examined how the performance of LEM

changed with the inclusion of prior information. Tomimic
the type of prior information that we used in the yeast
cell-cycle analysis, each node in our in silico networks was
assigned an identity, either repressor, activator, or both.
We incorporated this information in our prior distribu-
tion as follows: if Y is an activator, then all edges in which
Y appears as a repressor have prior probability 0; if Y is
a repressor, then all edges in which Y appears as an acti-
vator have prior probability 0; and if Y is both, then no
change is made to the prior distribution. Next we tested
the performance of LEM under increasing access to this
prior information. For increasing numbers of nodes, we
randomly selected nodes and included their identities as
prior information, computing LEM’s AUC-ROC score in
each case. As mentioned previously, partial inclusion of
this information incrementally improves the results (see
Additional file 1: Section 6 and Additional file 15).
Since we initially focused on producing in silico datasets

with periodic behavior, we also asked whether LEM
could infer network structure and parameters from non-
periodic data. For this testing, we generated several non-
periodic benchmark datasets in silico, and we used AUC-
ROC as a measure of LEM’s performance. LEM appears
to perform as well on these data as it does on oscillating

a b

Fig. 5 Ankrd23 knockdown leads to arrhythmicity of circadian bioluminescence output in mammalian clock cells. a, b NIH3T3 cells stably expressing
the mouse Per2 promoter driven destabilized luciferase reporter gene were reverse transfected with targeted siRNAs against Ankrd23 (n = 4),
negative siRNA, or pooled siRNAs (n = 4) targeting known clock genes as controls. Transfected cells were synchronized with forskolin 24 h
post-transfection. Bioluminescence was monitored in real time at a 1-h sampling resolution over 6 days. The mean bioluminescence data plotted
(n = 3) is a representative of three independent experiments. a Three out of four targeted siRNAs against Ankrd23 lead to an arrhythmic clock
phenotype. b Ankrd23 siRNA pool (n = 4) leads to a short/arrhythmic clock phenotype with an increased baseline similar to the Cry1 knockdown
control phenotype
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data from networks with the same number of nodes (see
Additional file 1: Section 7 for results and Additional file 5
for a comparison), with AUC-ROC scores between 0.8 and
1.
Lastly, we evaluated the computational requirements

imposed by the LEM algorithm. These requirements can
be large, since they depend quadratically on the num-
ber of nodes under consideration (see Additional file 1:
Section 4 for a precise description of LEM’s implemen-
tation and computational complexity, including run-time
tables). However, since LEM involves separately comput-
ing an approximate posterior distribution on the possible
regulations of each node, it is highly parallelizable. Lever-
aging parallel computations, we observed that LEM is
scalable to large networks of the order of hundreds of
nodes.

Discussion and conclusions
We have presented LEM as a tool to prioritize hypotheses
for gene regulatory network structures. After validating
the approach on in silico networks, we first compared
LEM outputs to a gold standard gene regulatory network
established by physical evidence gathered from ChIP-on-
chip studies in a well-characterized budding yeast cell-
cycle transcription network. In this analysis, outputs of
LEM, which we view as functional edges, consisted of
many of the edges previously characterized, along with
one novel edge (YOX1 repressing CTS1), which provides
an example of a potential discovery. LEM does not iden-
tify all edges that were detected by ChIP studies, and there
are several possible explanations of this. For one, LEM is
designed to identify the dominant regulatory signal in a
given experimental condition, and therefore, it is possi-
ble that the gold standard edges not found by LEM are
of secondary importance. Furthermore, we speculate that
physical binding does not always predict a functional rela-
tionship between regulator and target in the conditions
that were observed experimentally.
If we relax the p-value cutoffs used to construct the gold

standard network, we obtain a more complex network
with additional nodes and edges that have less experimen-
tal support (the yeast cell-cycle 5 network, see Additional
file 12 and Additional file 1: Section 10). In general, we
find that LEM (along with other algorithms) has a harder
time finding evidence for this network in the time-series
data. As seen in Additional files 5 and 6, all algorithms
perform poorly when this network is treated as the gold
standard. Indeed, all AUC scores are close to 0.5, which
is what one would expect if edges were ranked randomly.
This outcome suggests that there is little support in the
time-series data for this as the underlying network.
To demonstrate how LEM could be applied to study

larger biological networks, we used LEM to predict novel
members of the circadian transcription network, for

which both the regulators and the topology are incom-
pletely characterized. Using LEM to look for novel regu-
lators that both receive and transmit regulatory edges to
known circadian network nodes, we generated a candidate
list of about 200 potential circadian regulators, a dra-
matic reduction from the thousands of circadian oscillat-
ing genes that periodicity-detection algorithms reported
in Zhang et al. [44]. For evidence that these results are
informative, note that four regulators ranked in the top
20 have been previously shown to have circadian func-
tion (see Additional file 17). Furthermore, in a preliminary
screen, we found that four out of ten tested genes from
the LEM list showed a significant circadian phenotype,
despite that previous high-throughput screens found that
about 2 % of the genome has a circadian phenotype (see
Additional file 18). In light of this performance, we believe
that LEM is a powerful tool for reducing a hypothesis
space while inferring network topology from the available
data.
The issue of non-identifiability of network models for

gene regulatory networks has been recognized [6, 7] but
not widely studied. This issue arises when distinct net-
works (i.e., network topologies) have the capability of
generating the same dynamics within similar parame-
ter regimes. By definition, no inference algorithm can
distinguish between such non-identifiable pairs of net-
works. Since LEM takes a Bayesian approach, it implicitly
rewards models that are robust to changes of parameters
(see Additional file 1: Section 3 for a theoretical justifica-
tion and Additional file 20 for examples). Thus, if two dis-
tinct models generate the same dynamics, then LEM will
place a higher posterior probability on the more robust
model. Although LEM cannot overcome the theoretical
limits on inference placed by non-identifiability issues, we
observe that LEM, nonetheless, performs quite well, as
evidenced by its ability to find global systems of differ-
ential equations that fit the data (see Additional file 1:
Section 8 and Additional file 20 for examples). This phe-
nomenon also appears in yeast cell-cycle network 1, where
LEM does not capture all of the gold standard edges, but
it does generate dynamics that closely approximate the
observed data (see Additional file 21). Predictions made
by LEM for yeast cell-cycle network 1 that were not previ-
ously identified by experiments are in the process of being
tested.
In addition to the theoretical non-identifiability dis-

cussed above, there is a practical issue that arises when the
data are not informative enough to distinguish between
several models. This situation may arise when one con-
siders sparsely sampled or noisy data, and it calls for
additional data from other experimental conditions, such
as genetic perturbations. If such data become available,
they may be integrated into the framework of LEM via
prior information.
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As the size of a network grows, the degree of non-
identifiability may also increase, since many nodes can
present similar dynamics. Such an increase in non-
identifiability will necessarily limit the performance of any
edge inference algorithm on large networks. To illustrate
this point, we created two additional in silico datasets,
each with 100 nodes (see Additional files 22 and 23 for the
network diagrams and Additional files 24 and 25 for the
performance of the inference algorithms). By design, the
network in silico 23 contains an extreme amount of redun-
dancy, with 97 of the nodes having exactly the same time
series. However, this redundancy is concentrated within
the network in such a way that only one edge (out of
100) lacks identifiability, leading to very strong perfor-
mance by LEM and other edge inference algorithms in our
ROC analysis. The network in silico 24 has some practi-
cal non-identifiability, in the sense that some nodes have
very similar time series (although strictly speaking no two
nodes are exactly the same). Accordingly, the performance
of the inference algorithms suffers slightly on this dataset.
Despite that both of these networks have 100 nodes, LEM
is able to infer the correct edges with high accuracy. In
summary, non-identifiability (not size) appears to be the
main factor limiting the accuracy of LEM.
One of the simplifying assumptions in LEM is that each

node in the network has only one dominant regulator con-
trolling its expression level, which is in contrast to some
other algorithms, such as Inferelator, that allow one to
model regulation with some form of combinatorial con-
trol. In principle, one could modify LEM to include such
combinatorial terms. However, we believe that the data
available in the foreseeable future will not be informative
enough to overcome the increase in computational and
statistical complexity that would be introduced by these
terms, and therefore, inclusion of these terms at this time
would result in longer run times and more overfitting.
Furthermore, our results indicate that the present version
of LEMperforms well, even when the generating networks
are known to contain combinatorial regulation. One pos-
sible explanation for this performance is that even when a
gene experiences combinatorial regulation, at least one of
the regulators fits the target data reasonably well by itself.
In such cases, LEM will typically reward that regulator
with a high score, leading to strong performance in a ROC
analysis.
In Additional file 1: Section 4, we give details about

the computational burden of LEM. Other algorithms
that combine detailed differential equation models with
a Bayesian formalism tend to employ MCMC to approx-
imate the posterior distribution(s) [26, 48]. In general,
LEM avoids the need for any MCMC, thereby reducing
the computational burden. In an illustrative comparison
against the method of Mazur et al. [48] on four small net-
works with three nodes, LEM runs substantially faster (see

Additional file 26). We did not compare LEM directly to
CheMA [26], as the available implementation is designed
for protein signaling networks mediated by phosphory-
lation and therefore, it is not applicable in our setting.
Some algorithms that rely on different underlying tech-
niques run faster than LEM, such as Granger Causality
[14] and Inferelator [17, 18]. Nonetheless, the paralleliz-
ability of LEM makes it applicable to large networks, and
the improvement in inferential accuracy demonstrated by
LEM over previous methods suggests that it is an espe-
cially valuable tool in the search for functional networks
or network components, which are typically moderate in
size.
In the examples considered here, we have focused

largely on periodic time series of gene expression, as
they clearly result from functional networks, but there is
nothing inherent to LEM that limits its utility to gene
expression. Indeed, we expect it to generalize as well
to other dynamic processes, such as signal transduction
pathways or developmental networks. In future work, we
intend to extend LEM to allow for the explicit modeling
of other cellular processes, such as phosphorylation and
ubiquitination.

Additional files

Additional file 1: Supplementary Information. This document contains 13
sections, each of which provides supporting information for some aspect
of the study. Additionally, this document contains five internal tables.
(PDF 273 kb)

Additional file 2: Table: Biological prior information about gene function
used for LEM inference on yeast cell-cycle networks 1–5. LEM can
incorporate biological priors to remove any impossible edges (e.g., a TF
known to be an activator cannot repress a given target), which improves
inference on real data (see Additional files 5 and 13). Here we provide
literature evidence for TFs that function as an activator of target gene
transcription, repressor, or both. Genes marked N/A do not function as TFs.
Note 1. CLN3 is included as a regulator in networks 1, 2, and 5 because it is
known to inhibit Whi5 at cell-cycle START [2]. The other cyclins, CLN2 and
CLB2, are not included as regulators because their effects on TFs are
redundant with other edges included in the networks (instead, CLN2 and
CLB2 are used to represent canonical targets of TFs in the networks). Note
2. PLM2 is lacking specific literature evidence for its role as a TF activator.
However, PLM2 is a paralog of TOS4 from the S. cerevisiae whole-genome
duplication, and we propose that the activator function is shared between
the paralogs. (XLSX 43 kb)

Additional file 3: Table: Evidence for regulatory interactions in yeast
cell-cycle networks 1–5. Each row corresponds to a regulatory interaction
(edge), where an upstream regulator acts on a target gene. p values from
four high-throughput chromatin immunoprecipitation (ChIP) studies are
shown to provide evidence (when available) for a regulator transcription
factor (TF) binding to a target promoter [11, 50, 51]. ChIP p values were
combined using Fisher’s method [52]. Combined p values less than 0.001
were considered high-confidence evidence for a given edge (shown in
bold red). Where available, edges are supported by additional literature
references (see Additional file 8). In the absence of ChIP data, literature
evidence was used to determine edges. Evidence for many edges provided
here is also documented in the YEASTRACT database [42]. The direction of
each interaction (activation, repression, or N/A unknown) is derived from
the YEASTRACT database, literature evidence, and/or biological priors
about gene function (see Additional file 1). (XLSX 75 kb)
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Additional file 4: Figure: ROC plots of LEM together with the results of
TD-ARACNE and Banjo. For each of the six networks in Table 1 (in silico 1–5
and yeast cell-cycle network 1), we plotted the ROC curve generated by
LEM for the signed directed-edge classification problem. Additionally, we
plotted the corresponding results for the binary classifiers TD-ARACNE
(marked with a triangle) and Banjo (marked with a square). See Additional
file 1: Section 5 for details of these comparisons. (PDF 106 kb)

Additional file 5: Table: Comparison of LEM to existing algorithms on
both in silico benchmark datasets and in vivo datasets. As described in
Additional file 1: Section 5, LEM was compared to Inferelator, Granger
Causality, Hill-DBN, and Jump3 using both AUC-ROC scores and AUPR
scores and to TD-ARACNE and Banjo using MCC. See Additional file 1:
Section 9 for a description of the in silico networks and Additional file 1:
Section 11 for a description of the yeast cell-cycle networks. No prior
information was used in these comparisons. Replicates 1 and 2 indicate the
biological data input to LEM for predictions on yeast cell-cycle networks
1–5. (PDF 44 kb)

Additional file 6: Table: Comparison of LEM to existing algorithms on the
unsigned directed-edge classification problem. LEM was also compared to
existing algorithms on the unsigned directed-edge classification problem,
in which the sign of the edge (activator or repressor) is removed from
consideration. (PDF 43 kb)

Additional file 7: Table: Saccharomyces cerevisiae gene expression
dynamics used in this study. The wild-type gene expression data of 28
genes over approximately two cell cycles were obtained from previous
work [2]. Expression values from each profile were smoothed from 13
experimental time points to 40 time points by fitting a cubic spline (the
function splinefun in R package stats). A Rescon Ltd. tool was used
to rank the splined profiles by 50 % of the peak expression value. Genes are
ordered from earliest (top) to latest (bottom) half-maximal expression and
presented in the heat map in Fig. 1. (XLSX 51 kb)

Additional file 8: Table: Compilation of literature that supports regulatory
interactions in yeast cell-cycle networks 1–5. Numbers in the first column
match literature citations from Additional files 2 and 3. Each number
corresponds to a different study that provides experimental evidence for a
regulatory interaction. ChIP studies provide binding evidence for a TF to a
target gene promoter. Genetic studies provide directional evidence for
how a TF influences the expression of a target gene. Phosphorylation and
other protein–protein interaction studies provide evidence for how kinases
regulate TF activity, localization, and/or binding affinity. (XLSX 40 kb)

Additional file 9: Figure: Ranking of all possible regulations in yeast
cell-cycle network 1 by LEM. Each column is a list of possible controls for a
single target node. The control mechanisms within each column are rank
ordered by LEM according to the posterior likelihood (descending
likelihood). For example, in the top left, LEM finds that CTS1 is activated by
SIC1. Entries in green text correspond to the gold standard edges from
yeast cell-cycle network 1. (EPS 1096 kb)

Additional file 10: Figure: Network diagram of yeast cell-cycle 1. Genes
were ordered relative to the timing of their peak transcript level during the
cell cycle (where CLN3 represents START, and ACE2/SWI5 marks the M-G1
transition). Nodes and edges were selected as described in previous work
[2]. High-confidence transcription factor targets (RNR1, CLN2, PCL1, CIN8,
KIP1, CLB2, CDC20, CTS1, and SIC1) were added to increase network
complexity for testing the capabilities of LEM on real data. Pointed arrows
represent activation, and blunted arrows represent repression of target
gene expression. All regulatory interactions are supported by literature
evidence (see Additional file 3). In this network, SWI4 serves as a proxy node
for the SBF and MBF complexes, which activate a large and overlapping
program of approximately 200 genes at the G1-S transition. NDD1 serves as
a proxy node for the SFF (Swi Five Factor) complex, which activates a later
program of gene expression in S-G2/M. Network diagram of yeast cell-cycle
2. Genes were ordered relative to the timing of their peak transcript level
during the cell cycle (where CLN3 represents START, and ACE2/SWI5 marks
the M-G1 transition). Nodes and edges were selected as described in
previous work [2]. Pointed arrows represent activation, and blunted arrows
represent repression of target gene expression. All regulatory interactions
are supported by literature evidence (see Additional file 3). Proxy genes for
complexes are as described for yeast cell-cycle 1. (EPS 315 kb)

Additional file 11: Figure: Network diagram of yeast cell-cycle 3. Genes
were ordered relative to the timing of their peak transcript level during the
cell cycle. Nodes and edges were selected as described in previous work
[3]. Pointed arrows represent activation, and blunted arrows represent
repression of target gene expression. All regulatory interactions are
supported by literature evidence (see Additional file 3). Proxy genes for
complexes are as described in Additional file 10. Network diagram of yeast
cell-cycle 4. Genes were ordered relative to the timing of their peak
transcript level during the cell cycle. Nodes and edges were selected as
described in previous work [3]. Pointed arrows represent activation, and
blunted arrows represent repression of target gene expression. All
regulatory interactions are supported by literature evidence (see Additional
file 3). Proxy genes for complexes and the addition of canonical target
genes were applied as described in Additional file 10. (EPS 324 kb)

Additional file 12: Figure: Network diagram of yeast cell-cycle 5. All
transcription factor (TF) nodes from [2, 3] and expanded components of TF
complexes were included in this network model (with the exception of
ASH1, a daughter-specific repressor). Genes were generally ordered by the
timing of peak expression and spatially optimized for network visualization.
Pointed arrows represent activation, and blunted arrows represent
repression of target gene expression. All regulatory interactions are
supported by literature evidence (see Additional file 5). (EPS 379 kb)

Additional file 13: Table: AUC-ROC scores for LEM on in silico networks
with observational noise and prior information. As described in Additional
file 1: Section 6, we added truncated Gaussian noise to the expression of
each gene individually. The column labeled “Noise Level” indicates the
variance of the noise as a percentage of the variance of the gene
expression. We report the AUC-ROC score for LEM for five in silico networks
with increasing access to prior information. (PDF 39 kb)

Additional file 14: Table: Comparison of LEM with priors to existing
algorithms on in vivo datasets. In this comparison, each algorithm has
access to additional prior information, in the form of a known identity for
each node (activator, repressor, neither, or both/unknown). See Additional
file 1: Section 11 for a description of the yeast cell-cycle networks used.
(PDF 35 kb)

Additional file 15: Table: AUC-ROC scores for LEM on yeast cell-cycle
networks with partial access to prior information. For each of the yeast
cell-cycle networks, we collected the known identities of the nodes:
activator, repressor, both/unknown, or neither (see Additional file 2). The
number of such pieces of information for each network is presented in the
column labeled “# Priors.” The other columns present the average
AUC-ROC score obtained by LEM on each network after randomly
selecting the indicated fraction of the possible pieces of prior information
as input to LEM 100 times (except that no random selections are necessary
in the columns denoted “NoPrior” and “FullPrior”). (PDF 30 kb)

Additional file 16: Table: Compilation of literature that supports the
designation of circadian core nodes. The first column gives the names of
the genes that were considered to be circadian core genes in our analysis.
The second column provides any alternative gene names, and the third
column lists literature references that support the designation of the
corresponding gene as being part of the circadian core. (XLSX 54 kb)

Additional file 17: Table: Ranking of candidate circadian regulators. We
used LEM to discover new potential regulators of circadian core nodes (see
Additional file 16) by first selecting the top periodic gene sets from 12
mouse organs (see Additional file 1: Section 12) and then using LEM to
identify genes that appear likely to regulate core elements in multiple
organs. We obtained a final list of 354 candidate genes (333 top potential
regulators plus the 21 core nodes that do appear in the set of 333), of
which 205 were either in the set of 31 known core genes or passed the
JTK_CYCLE periodicity cutoff of 0.1 for the mouse liver dataset. This table
lists the 205 gene common names (column 1), mouse genome database
IDs (column 6), and microarray probe IDs (column 5). Additionally, the table
marks core nodes with an “x” (column 7) and provides the JTK_CYCLE
periodicity p value (column 11). Next, we ran full LEM with 205 nodes using
mouse liver data. For each of the 205 candidates, we extracted the
maximum LEM probability score for any core element targeting each
candidate (column 2) and the maximum score for each candidate
regulating any core node (column 3). The candidate list is ranked by the
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product of these two probabilities (column 4). Finally, we compared our
candidate list to a compilation of genes with known circadian function
(column 7), reviewed by Zhang et al. [12]. (TXT 20 kb)

Additional file 18: Table: Circadian phenotypes of target genes screened
by RNAi in NIH3T3 Per2:Luc circadian bioluminescence reporter cells. The p
values for cycling were calculated using a wavelet-based method [53]. The
significance of period length changes was determined using a two-way
t-test. “AR” is an abbreviation of “arrhythmic.” A p-value cutoff of 0.05 was
used to determine whether the period length change from Neg si
treatment was statistically significant. Five out of ten target genes were
found to have a significant circadian phenotype. (PDF 36 kb)

Additional file 19: Table: Multiple hypothesis corrections for analysis of
circadian target genes. The column “BHq val” contains the Benjamini–Hochberg
corrected q values [54]. Four out of ten candidate genes remain significant
after multiple hypothesis correction. (PDF 30 kb)

Additional file 20: Figure: Comparison of ODE systems inferred by LEM to
networks in silico 3 and in silico 8. We used the networks in silico 3 (a) and
in silico 8 (d) to generate data, which was then input to LEM. The most
likely regulation of each node (as given by LEM output) was combined to
form networks (b,e) with corresponding systems of ODEs. Simulation of the
systems of ODEs inferred by LEM was then compared to the original data
(c,f). (EPS 1045 kb)

Additional file 21: Figure: Yeast cell-cycle network 1 data and inferred
LEM ODE simulations. After running LEM on the yeast cell-cycle data [2], we
formed a network (with a corresponding system of ODEs) by selecting the
most likely regulation of each node, as evaluated by LEM. The simulation of
this system of ODEs was then compared to the original data. (EPS 686 kb)

Additional file 22: Figure: Network diagram for in silico 23. The network
consists of a three-node core network with 97 sink nodes added in the
same phase. (PDF 8 kb)

Additional file 23: Figure: Network diagram for in silico 24. The network
consists of a five-node core network with 95 additional nodes driven by the
core. (PDF 12 kb)

Additional file 24: Table: Comparison of methods using AUC-ROC and
AUPR scores for the 100-node networks. Scores are reported for the
networks in silico 23 and in silico 24 on both the signed and unsigned
edge inference challenges. (PDF 31 kb)

Additional file 25: Table: Comparison of methods using MCC scores for
the 100-node networks. Scores are reported for the networks in silico 23
and in silico 24 on both the signed and unsigned edge inference
challenges. (PDF 29 kb)

Additional file 26: Table: Run times of LEM and the method of Mazur
et al. Run times are reported for LEM and the method of Mazur et al. [48] on
four in silico networks, each with three nodes. The method of Mazur et al.
was run with all default settings, including 10,000 steps of burn-in and
50,000 steps of iteration for the MCMC computations. Although LEM is
parallelizable, here we report the amount of time LEM would take to run
on a single core. (PDF 34 kb)
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