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Abstract Bio-inspired algorithms are widely used to

optimize the model parameters of GRN. In this paper,

focus is given to develop improvised versions of bio-in-

spired algorithm for the specific problem of reconstruction

of gene regulatory network. The approach is applied to the

data set that was developed by the DNA microarray tech-

nology through biological experiments in the lab. This

paper introduced a novel hybrid method, which combines

the clonal selection algorithm and BFGS Quasi-Newton

algorithm. The proposed approach implemented for real

world E. coli data set and identified most of the relations.

The results are also compared with the existing methods

and proven to be efficient.

Keywords Clonal selection algorithm � Immuno-hybrid

algorithm � Optimization algorithm � Gene regulatory

network � DNA microarray � BFGS Quasi-Newton

Introduction

It has been seen that, even though the biological systems

are very complex, they exhibit very sophisticated behavior

in the evolution with time and there are many regularities

that have been observed, which leads to the scientific

understanding of the biological processes and the behavior.

Identification of the relationships between genes leads to

better understanding of the complexities of the biological

systems at molecular level. GRN is a network of interre-

lated genes participating in a biological process. Identifi-

cation of the gene network provides an insight into the

important genes that are participating in a bio-chemical

process. The major applications of the gene regulatory

network include identification of network topology, iden-

tification of central node in the network, identification of

the sub networks, mutual dependency between genes and

dependency between different biological conditions from a

computational viewpoint. Recognition of central gene or

gene set can be used to synthesize better drugs for the

inhibition or activation of the biological processes and the

methodology can be extended to drug design or to study the

direct drug delivery mechanisms.

This topic of research has been very active for the last

one decade. Various researchers have suggested techniques

attempting to solve this problem with faster convergence

and accuracy. Boolean network is a network of variables

whose values are true or false. A gene network can be

defined in terms of Boolean network as G(V, E) with a set

of states X = {xi|i = 1…n} due to a set of Boolean oper-

ations: B = {bi|i = 1,…,n}; xi (t ? 1) = bi(xi1,…,xin)

where, xij denotes the states of the nodes connected to

vertex i; ‘n’ denotes the number of genes involved in the

situation. Kauffman (1969) introduced Boolean network

that consists of binary state variables for the construction of

gene network. After this a number of Boolean methods

were proposed by the researchers (Liang et al. 1998;

Akutsu et al. 1999; Maucher et al. 2011). Due to the

complexity of the biological systems, the data obtained

through the experiments are uncertain and incomplete. The
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exact modeling of gene regulatory network is a difficult

problem. It is possible to represent a relation with more

than one function. To solve this problem an advancement

of Boolean network is introduced, namely, probabilistic

Boolean network. Based on this concept (Shmulevich et al.

2002; Liang and Han 2012) proposed methods for recon-

struction of GRN. For all the Boolean models, binary states

of the genes represent whether a gene is present or not in

the gene network, but do not indicate the extent of its

participation in the relation. This leads to lower accuracy in

predictions.

Bayesian network is a probabilistic directed acyclic

graph model based on the ideas proposed by Bayes et al.

(1763). Joint probability distribution is used in the calcu-

lation of relationships in Bayesian network. Based on this

modeling several standard methods are introduced (Yang

et al. 2011; Tan and Mohamad 2012; Dondelinger et al.

2012). Gene network interactions are cyclic and non-lin-

early complex. Therefore, Bayesian networks may fail if

such condition happens.

Artificial neural network is a tool for predicting gene

network used by several researchers. Based on the recur-

rent neural network lots of works have been produced by

the researchers (Vohradský 2001; Lee and Yang 2008;

Noman et al. 2013). Major disadvantage of the neural

network model is the increased complexity with respect to

number of genes. Support vector machine is another

machine-learning tool for predicting GRN (Kimura et al.

2009).

Reconstruction of gene network using the differential

equation model is a popular approach. Apart from the co-

expression models, differential equation models have the

capability to describe the dynamic behavior of the bio-

logical system. S-system (Savageau 2000) is a well-ac-

cepted mathematical model for the chemical reactions. The

system is based on the rate law of chemical reactions and

considers entire biological system as chemical process.

Optimizing the S-system variables is a crucial step in the

gene network reconstruction. There are several bio-inspired

algorithms used for the optimization purpose. Based on the

evolution, the standard proposals are (Noman and Iba

2005; Huang et al. 2008; Mondal et al. 2010; Spieth et al.

2004; Kabir et al. 2008). Most of them are based on

Genetic Algorithm theory. Apart from the evolution algo-

rithms, there are successful proposals employing Cuckoo

search (Jereesh and Govindan 2013a, b), particle swarm

approach (Xu et al. 2007; Hsiao and Lee 2007; Yang et al.

2013) and artificial immune approaches (Jereesh and

Govindan 2013c, 2014).

There are many bio-inspired algorithms to solve the

reconstruction problem of gene regulatory network. The

convergence speed of heuristic algorithms is a serious issue

because they are highly nonlinear. High computational

complexity and low accuracy are the main issues that need

to be tackled. The tradeoff between time and accuracy

factors of the algorithms still poses challenges. A system-

atic study will not end in itself because the biological

systems are very sophisticated and the processes are highly

nonlinear. Any addition of new knowledge would thus lead

to an incremental understanding of the natural processes

from a scientific viewpoint. So, there is ample scope for

improvements in science and technology in the future. This

paper proposes a novel and innovative technique to

enhance the performance of the gene related process rep-

resentations and understanding. The methodology followed

is network modeling and verification through computa-

tional techniques using gene expression.

Representation of gene network

Gene regulatory network generally can be represented as a

graph G(V, E) in which vertices represent the gene and

edges represent the relationship between them. The rela-

tionship between each gene represents overall performance

of the gene network. A function or a set of functions

determines the expression rate of each gene at a particular

condition as described in Eq. (1).

F ¼ ffiji 2 N and 1� i� ng; ð1Þ

where, n is the total number of genes participating in the

gene network, and f is a mathematical function whose

inputs are current states (X(t) = x1(t),…, xn(t)) of the genes

and output is next state of genes. The updated

concentration, xi of each gene i for time t ? 1 is defined

as Eq. (2).

xi t þ 1ð Þ ¼ fi x1 tð Þ; x2 tð Þ; . . .; xn tð Þð Þ: ð2Þ

The main features used for the pattern identification of

gene network are the inhibitory relations and excitatory

relations between genes. Inhibitory relation represents the

genes capability to reduce the concentration of other genes

and excitatory relation represents the opposite actions. In

this context, a gene can act as both inhibitory and

excitatory agent for another gene. There is positive

inhibition and negative inhibition. Positive inhibition

represents how gene increases the rate of inhibition.

Negative inhibition represents how gene decreases the
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inhibition rate. Similarly, there is positive and negative

excitation values depending on the behavior of the gene.

Thus, there can be the following possibilities for the gene

relations.

• A gene can act as inhibitory for one gene and excitatory

for another gene.

• A gene can act as both inhibitory and excitatory for the

other gene.

• At a time, a gene cannot act as positive and negative

inhibitor.

• At a time, a gene cannot act as positive and negative

excitatory.

The major decision variables for the gene network

depend on the above-mentioned properties.

Evaluation measures

In the literature, various standard methods are used to

evaluate the results in the area being pursued. Most of the

literature provides evaluation based on the comparison

between their research findings and the relations identified

by the biologists. It is very difficult to evaluate the

research findings since the problem is to find the rela-

tionships in the biological system. There is a chance that

the identified relations through biological experiments are

incomplete. In such situations, to evaluate properly, there

is a need for artificially generated data. Artificially gen-

erated data are those that generated by the models of

biological system. With the combination of biological real

life data and artificial data, we evaluated performance of

various proposals in the thesis. The output microarray

values for the biological system and artificially simulated

system are categorized into accepted values and the val-

ues provided by the models proposed are categorized as

the computed values.

For the evaluation, computed values have been

compared with the accepted values. In the thesis, two

types of comparison are performed for the evaluation.

The first one focuses on the comparison of relations

accepted by biologists and that computed by models.

TP (true positive), FN (false negative), TN (true neg-

ative) and FP (false positive) are used for the com-

parison based on the biological relations. The second is

based on the mean squared error (MSE) computed

between accepted data values (that are generated bio-

logically or artificially) and computed microarray data

values.

The important metrics used to evaluate the gene regu-

latory network reconstruction in literature are briefly pre-

sented in the following subsections.

Fitness function

Mean squared error (MSE) proposed by the Tominaga et al.

(2000) is used as the fitness function for the optimization.

f ¼
XN

i¼1

XT

t¼1

xcali;t � x
exp
i;t

x
exp
i;t

 !2

; ð3Þ

where x
exp
i;t , x

cal
i;t are the expression value of gene i at time

t from the experimental and estimated (calculated) data,

respectively. Here, N is the total number of genes and T is

the time interval.

Sensitivity

This measurement calculates the fraction of accepted

relations that are identified. Equation for the sensitivity is

given as expression (4).

Sensitivity ¼ TP

TPþ FN
�100; ð4Þ

where TP is the true positive, that is, number of accepted

relations identified, FN is the false negative, that is, number

of accepted relations that are not identified. The percent

sensitivity value is 100 if all the accepted relations are

identified.

Specificity

This measurement calculates the fraction of unaccepted

biological relations that were shown unaccepted. The

equation for evaluating specificity is given as expression

(5).

Specificity ¼ TN

TNþ FP
�100; ð5Þ

where TN is the true negative, that is, number of unac-

cepted relations shown unaccepted, FP is the false positive,

that is, number of unaccepted relations that were identified

as accepted. The specificity percent value is 100 if all the

unaccepted relations are identified as unaccepted.

Balanced accuracy

Data related to bioinformatics is inadequate and imbal-

anced, hence, to measure the accuracy of the research, in
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the problem mentioned, a parameter called balanced

accuracy is used. The RHS of Eq. (6) represents the

expression for balanced accuracy. It is the mean of the

sensitivity and specificity measures computed as follows.

Balanced accuracy ¼ Sensitivityþ Specificity

2

� �
�100

ð6Þ

Similar to all percentage problems, if the balanced

accuracy increases the result will be more similar to reality

and the values would lie between 0 and 100, 100 being

close to reality.

S-system model

Most popular differential equation model is the S-system

model, which is a well-accepted nonlinear differential

equation modeling proposed by Savageau (Savageau

2000). In the S-system, the rate of change of concentration

of gene xi is defined as in Eq. (7).

dxi

dt
¼ ai

YN

j¼1

xj tð ÞGi;j�bi
YN

j¼1

xj tð ÞHi;j ; ð7Þ

where Gi,j and Hi,j are excitatory and inhibitory coeffi-

cients, respectively. ai C 0 and bi C 0 are rate constants.

Gi,j and Hi,j represent the relationship between each genes

and xj(t) is the concentration of gene j expressed at time t.

S-system is a power law formalism, which is inspired

from the chemical reaction processes. According to the rate

law, the rate of change of concentration of each reactant is

represented by the equation k(T)[CA]
x[CB]

y, where k(T) is

the rate constant which is having a dependency with the

temperature T. CA and CB express the concentration of the

species A and B. The exponents x and y are reaction orders.

Gene regulation interaction is a bio-chemical process that

takes place in a living organism. This model demonstrates

the chemical reaction that happens between genes. The

total number of variables used in the S-system is

2N ? 2N2, where N is the number of genes in the reaction.

In this paper, S-system is the mathematical model used

to model the GRN.

Immuno-hybrid based S-system model
computation

This algorithm is a global–local optimization approach

to solve the problem of gene regulatory network recon-

struction using the DNA microarray data. This approach

is a combination of clonal selection algorithm (Jereesh

and Govindan 2013c) and BFGS Quasi-Newton algo-

rithm (Dennis and More 1977). Clonal selection algo-

rithm is a meta-heuristic algorithm used for the

optimization problems. In the clonal selection algorithm

maturation step is replaced with two operations. First

one is the cloned mutation process, in which each clone

of the selected antibodies are mutated using a mutation

probability m. Diagrammatic representation of general

cloned mutation process is depicted as in Fig. 1. Second

one is the local weight updating process, in which each

mutated antibody is updated using the BFGS Quasi-

Newton method. In the second step, dynamic step size

change is introduced as per the Eq. (8). Each antibody

holds inherited properties from the parent and the

divergence properties due to mutation. Detailed algo-

rithm for the immuno-hybrid approach is given as

Algorithm 1.

For the gene regulatory network construction, each

antibody in the population stands for the parameters of the

S-system. Identifying the optimal antibody solution is the

problem specified here. Format of the vector representing

individual antibody is given in Fig. 2. Fitness evaluation is

done using Eq. (3). For fitness calculation, at first the

individual antibody is modeled as a vector representing the

solution parameters of the S-system model. Then, the dif-

ferential equation of S-system is solved by Runge–kutta

algorithm. Original microarray values and generated

microarray values are used to compute fitness value using

Eq. (3).

l ¼ round k� P� Rf � 1ð Þð Þ; ð8Þ

where l is the maturation rate, k is the local iteration

factor; P is the population size and Rf is the rank of indi-

vidual based on the fitness value.

Fig. 1 Mutated cloning method

… … , … , , … ,

Fig. 2 Format of the vector representing an individual cuckoo
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Algorithm 1: Immuno-Hybrid Algorithm for the optimization of S-system based GRN model
Input:  

Maximum Number of Generations, G
Error tolerance, ε
Duration of unchanged error, δ
Population Size, P
Cloned population size, C
Clone factor, CF
Mutation probability, m
Local iteration factor, 
Number of random solutions introduced for each generations, R
Convergence criterion: (generation > = G) or (Error <= ε) or (error unchanged for δ continuous 

generations)  
Output: Solution X
//Initialization

1. Initialize G, ε,δ, P, C, CF, m, and R

2. Generate P feasible antibody solutions randomly and assign to Population

// Repeat until convergence criteria met

3. While  convergence criteria not met do

// Generate Cloned population from the selected individuals

a. Select the C number of individuals with best affinity from the population

b. Generate CF number of clones for each selected C individuals

// Mutate cloned individuals from the population.

c. Mutate each clone as per mutation probability m.

d. Depending on the fitness value, calculate Maturation rate, for each mutated individuals as per 

equation 8.

// Generate Maturated population from the Cloned population

e. Maturate cloned individuals using BFGS Quasi -Newton weight updating method for times as 

per algorithm 2.

// Elimination of antibody with low affinity using Rank based selection

f. Generate R feasible solutions randomly and add to population

g. Select the best P number of individuals from the population and   abandon others

4. End while

5. End

Algorithm 2: BFGS Quasi-Newton weight updating Algorithm

Input: Feasible solution, x0

Maturation rate, 

Output: local optimal solution, X 

/* Initialization */

1. Initialize initial solution xo as the cloned individual.

2. B0=I

3. Set k=1

/* Repeat for times */

4. for each iteration k up to k= do

a. Direction, dk = - −1gk   /* Bk is an approximate hessian matrix and gk is gradient vector*/

b. Updated solution, xk+1=xk + k dk /* k is the step size*/

c. Set sk = kdk

d. Set yk = gk+1 - gk

e. Find  Bk+1 using the BFGS Quasi-Newton formula given as equation 9.

5. end for

6. return local optimal solution, X
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Fig. 3 Time-dynamics of the ten data sets of five-dimensional regulatory system
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BFGS Quasi-Newton formula

Bkþ1 ¼ Bk þ ðrkrTk = rTk dkÞ � ðBkdkd
T
k Bk=d

T
k BkdkÞ; ð9Þ

where Bk is an approximate hessian matrix,

sk ¼ akdk ð10Þ
yk ¼ gkþ1 � gk ð11Þ

Results and discussions

For comparing the efficiency of the proposed approaches in

the paper, a well-known five-gene standard artificial net-

work (Noman and Iba 2005; Kimura et al. 2008; Kabir

et al. 2008) is identified. The simulated microarray data is

generated using the Runge–kutta algorithm and S-system

model. For the experimentation, ten sets of expression data

with initial values in the interval [0, 1] are generated

artificially.

The initial values used for the generation of artificial

data are taken as per (Jereesh and Govindan 2013c). To

average the performance over more data sets, we generated

ten artificial data sets with the help of a model by Hlavacek

and Savageau (1996) and the time dynamics of data sets are

given in Fig. 3.

The proposed immuno-hybrid approach for optimizing

the parameters of S-system is compared with the other

approaches (Spieth et al. 2004; Jereesh and Govindan

2013a, b, c) in literature. For the artificial data, perfor-

mance comparison with respect to the convergence is

depicted in Fig. 4. It is evident that the immuno-hybrid

approach outperforms all of the mentioned approaches. The

immuno-hybrid approach using S-system converged after

0.9 9 105 fitness evaluations, which is a good improve-

ment in speed performance, compared to other algorithms.

SOS DNA repairing system in E. coli: real world

experimental data

Escherichia coli (E. coli) are bacterium residing in the

lower intestine of warm-blooded organisms. This causes

food poisoning occasionally. Most of the E. coli is harm-

less for the host and some will help to produce vitamin K2.

This also helps for the proper digestion of the food. This

bacterium is easy to reproduce within a time limit on

laboratory conditions and important species in the study of

molecular biology.

Fig. 4 Performance of convergence. Comparison of errors obtained

for memetic algorithm, cuckoo search using S-system, modified

cuckoo search using S-system, clonal based approach using S-system

model and immuno-hybrid approach using S-system

Fig. 5 SOS DNA repair system of E. coli (solid lines indicate the

activation and dashed lines indicate the inhibition)

Fig. 6 SOS DNA repair system of E. coli identified immuno-hybrid

based approach using S-system model (dotted line indicates the

inhibition and solid line indicates the activation, green lines indicate

the relations that were also identified by the biologists)
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SOS DNA repair system in E. coli (Sutton et al. 2000) is

a famous real life data set, which is commonly used to

evaluate the efficiency of gene regulatory network recon-

struction methods. Figure 5 is a graphical representation of

gene interactions following the damage of DNA. Mainly

six major genes (uvrD, lexA, umuD, recA, polB and uvrA)

are involved in the processing of DNA repair (Kimura et al.

2008, 2009; Kabir et al. 2008; Hsiao and Lee 2007). LexA

is a repressor gene, which inhibits the expression of other

genes. Whenever DNA damage happens in E. coli, RecA

identifies the damage and activates the processing of

cleavage of LexA. Hence, the concentration of the LexA is

reduced and leads to the excitation of other genes. After the

clearance of damage, cleavage of LexA will be slow

downed and stopped, and this leads to increased concen-

tration of LexA. The LexA represses the other genes and

advances to a balanced state. Construction of gene network

allows predicting the roles of each of the genes in the DNA

repairing system.

SOS DNA repair system of E. coli data set is obtained

from the experiments done by Uri Alon lab of Weizmann

Institute of science; (website http://wws.weizmann.ac.il/

mcb/UriAlon/download/downloadable-data). There are 50

time-periods for the experiment in which 49 are used for

the experimentation where the first time-period is at zeroth

time and contains zero knowledge. Out of the eight genes

we have selected, six important genes are specified. All the

values in the expression have been normalized in the range

of [0, 1].

Gene regulatory network for DNA repair system of

E. coli identified by the immuno-hybrid approach is

depicted as in Fig. 6. The immuno-hybrid based approach

using S-system model identified eight relations, which was

identified by the biologists (Table 1).

Conclusions

Biological systems behave differently in different condi-

tions. To model such systems we need a dynamical mod-

eling. A nonlinear differential equation modeling for the

dynamic biological systems is a common approach. This

paper proposed an evolutionary global–local hybrid algo-

rithm for the optimization of gene regulatory network

modeling. An algorithm called clonal selection based

optimization algorithm is combined with the BFGS Quasi-

Newton search method to develop immuno-hybrid algo-

rithm. The randomness property, cloned mutated process

and local weight updating property are the key factors for

the immuno-hybrid approach. The proposed approaches

predicted gene network for artificial data set and SOS DNA

repair system more efficiently than many of the existing

algorithms. The convergence speed and accuracy compared

with the existing approaches are found to be superior. The

immuno-hybrid approach provided still better performance

figures of 89 and 70.5, respectively, for sensitivity and

balanced accuracy. In addition, immune-hybrid approach

identified eight valid relations, which is the highest among

all of the other algorithms. Thus, it is demonstrated that a

combination of differential modeling and hybrid opti-

mization techniques can provide better reconstruction of

gene network.
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