158 research outputs found

    Collision-Free Path and Motion Planning for Anthropometric Figures

    Get PDF
    This paper describes a collision free path planning and animation system for anthropometric figures. It can also take into consideration the strength limit of human figures and plan the motion accordingly. The algorithm breaks down the degrees of freedom of the figure into Cspace groups and computes the free motion for each of these groups in a sequential fashion. It traverses the tree in a depth first order to compute the motion for all the branches. A special playback routine is then used to traverse the tree in a reverse order to playback the final motion. Strength value measures are incorporated directly into the searching function so that path computed will obey strength availability criteria. The planner runs in linear time with respect to the total number of Cspace groups. The planner can interface with other simulation techniques to simulate complex human motions. We believe that the planner would find a path in most cases and is fast enough for practical use in a wide range of computer graphics applications

    Fast Motion Planning for Anthropometric Figures with Many Degrees of Freedom

    Get PDF
    Human-like robots are useful in many areas such as deep sea mining and space applications. An efficient motion planning algorithm for these type of robots will be helpful in achieving task level programming. In this paper we present a new efficient algorithm that has successfully computer collision free motions for anthropometric figures with many degrees of freedom within a clustered environment

    Motion Planning for Redundant Branching Articulated Figures with Many Degrees of Freedom

    Get PDF
    A fast algorithm is presented that can handle the motion planning problem for articulated figures with branches and many degrees of freedom. The algorithm breaks down the degrees of freedom of the figure into Cspace groups and compute the free motion for each of these groups in a sequential fashion. It traverses the tree in a depth first order to compute the motion for all the branches. A special playback routine is then used to traverse the tree again in a reverse order to playback the final motion. The planner runs in linear time with respect to the total number of Cspace groups without backtracking. We believe that the planner would find a path in most cases and is fast enough for practical use in a wide range of applications

    Simulating Human Tasks Using Simple Natural Language Instructions

    Get PDF
    We report a simple natural language interface to a human task simulation system that graphically displays the performance of goal-directed tasks by an agent in a workspace. The inputs to the system are simple natural language commands requiring achievement of spatial relationships among objects in the workspace. To animate the behaviors denoted by instructions, a semantics of action verbs and locative expressions is devised in terms of physically based components, in particular geometric or spatial relations among the relevant objects. To generate human body motions to achieve such geometric goals, motion strategies and a planner that used them are devised. The basic idea for the motion strategies is to use commonsensical geometric relationships to determine appropriate body motions. Motion strategies for a given goal specify possibly overlapping subgoals of the relevant body parts in such a way achieving the subgoals makes the goals achieved without collision with objects in the workspace. A motion plan generated using the motion strategies is basically a chart of temporally overlapping goal conditions of the relevant body parts. This motion plan is animated by sending it to a motion human controller, which incrementally finds joint angles of the agent\u27s body that satisfy the goal conditions in the motion plan, and display the body\u27s configurations determined by the joint angles

    Evolutionary and Transmission Dynamics of Reassortant H5N1 Influenza Virus in Indonesia

    Get PDF
    H5N1 highly pathogenic avian influenza (HPAI) viruses have seriously affected the Asian poultry industry since their recurrence in 2003. The viruses pose a threat of emergence of a global pandemic influenza through point mutation or reassortment leading to a strain that can effectively transmit among humans. In this study, we present phylogenetic evidences for the interlineage reassortment among H5N1 HPAI viruses isolated from humans, cats, and birds in Indonesia, and identify the potential genetic parents of the reassorted genome segments. Parsimony analyses of viral phylogeography suggest that the reassortant viruses may have originated from greater Jakarta and surroundings, and subsequently spread to other regions in the West Java province. In addition, Bayesian methods were used to elucidate the genetic diversity dynamics of the reassortant strain and one of its genetic parents, which revealed a more rapid initial growth of genetic diversity in the reassortant viruses relative to their genetic parent. These results demonstrate that interlineage exchange of genetic information may play a pivotal role in determining viral genetic diversity in a focal population. Moreover, our study also revealed significantly stronger diversifying selection on the M1 and PB2 genes in the lineages preceding and subsequent to the emergence of the reassortant viruses, respectively. We discuss how the corresponding mutations might drive the adaptation and onward transmission of the newly formed reassortant viruses

    ANS: Aberrant Neurodevelopment of the Social Cognition Network in Adolescents with Autism Spectrum Disorders

    Get PDF
    Background: Autism spectrum disorders (ASD) are characterized by aberrant neurodevelopment. Although the ASD brain undergoes precocious growth followed by decelerated maturation during early postnatal period of childhood, the neuroimaging approach has not been empirically applied to investigate how the ASD brain develops during adolescence. Methodology/Principal Findings: We enrolled 25 male adolescents with high functioning ASD and 25 typically developing controls for voxel-based morphometric analysis of structural magnetic resonance image. Results indicate that there is an imbalance of regional gray matter volumes and concentrations along with no global brain enlargement in adolescents with high functioning ASD relative to controls. Notably, the right inferior parietal lobule, a role in social cognition, have a significant interaction of age by groups as indicated by absence of an age-related gain of regional gray matter volume and concentration for neurodevelopmental maturation during adolescence. Conclusions/Significance: The findings indicate the neural correlates of social cognition exhibits aberrant neurodevelopment during adolescence in ASD, which may cast some light on the brain growth dysregulation hypothesis. The period of abnormal brain growth during adolescence may be characteristic of ASD. Age effects must be taken into account while measures of structural neuroimaging have been clinically put forward as potential phenotypes for ASD

    Identification of IGF1, SLC4A4, WWOX, and SFMBT1 as Hypertension Susceptibility Genes in Han Chinese with a Genome-Wide Gene-Based Association Study

    Get PDF
    Hypertension is a complex disorder with high prevalence rates all over the world. We conducted the first genome-wide gene-based association scan for hypertension in a Han Chinese population. By analyzing genome-wide single-nucleotide-polymorphism data of 400 matched pairs of young-onset hypertensive patients and normotensive controls genotyped with the Illumina HumanHap550-Duo BeadChip, 100 susceptibility genes for hypertension were identified and also validated with permutation tests. Seventeen of the 100 genes exhibited differential allelic and expression distributions between patient and control groups. These genes provided a good molecular signature for classifying hypertensive patients and normotensive controls. Among the 17 genes, IGF1, SLC4A4, WWOX, and SFMBT1 were not only identified by our gene-based association scan and gene expression analysis but were also replicated by a gene-based association analysis of the Hong Kong Hypertension Study. Moreover, cis-acting expression quantitative trait loci associated with the differentially expressed genes were found and linked to hypertension. IGF1, which encodes insulin-like growth factor 1, is associated with cardiovascular disorders, metabolic syndrome, decreased body weight/size, and changes of insulin levels in mice. SLC4A4, which encodes the electrogenic sodium bicarbonate cotransporter 1, is associated with decreased body weight/size and abnormal ion homeostasis in mice. WWOX, which encodes the WW domain-containing protein, is related to hypoglycemia and hyperphosphatemia. SFMBT1, which encodes the scm-like with four MBT domains protein 1, is a novel hypertension gene. GRB14, TMEM56 and KIAA1797 exhibited highly significant differential allelic and expressed distributions between hypertensive patients and normotensive controls. GRB14 was also found relevant to blood pressure in a previous genetic association study in East Asian populations. TMEM56 and KIAA1797 may be specific to Taiwanese populations, because they were not validated by the two replication studies. Identification of these genes enriches the collection of hypertension susceptibility genes, thereby shedding light on the etiology of hypertension in Han Chinese populations

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore