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can also take into consideration the strength limit of human figures and plan the motion accordingly. The
algorithm breaks down the degrees of freedom of the figure into Cspace groups and computes the free
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compute the motion for all the branches. A special playback routine is then used to traverse the tree in a
reverse order to playback the final motion. Strength value measures are incorporated directly into the
searching function so that path computed will obey strength availability criteria. The planner runs in linear
time with respect to the total number of Cspace groups. The planner can interface with other simulation
techniques to simulate complex human motions. We believe that the planner would find a path in most
cases and is fast enough for practical use in a wide range of computer graphics applications.
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Abstract

This paper describes a collision free path planning and animation system for anthropometric
figures. It can also take into consideration the strength limit of human figures and plan the
motion accordingly. The algorithm breaks down the degrees of freedom of the figure into Cspace
groups and computes the free motion for each of these groups in a sequential fashion. It traverses
the tree in a depth first order to compute the motion for all the branches. A special playback
routine is then used to traverse the tree in a reverse order to playback the final motion. Strength
value measures are incorporated directly into the searching function so that path computed
will obey strength availability criteria. The planner runs in linear time with respect to the
total number of Cspace groups. The planner can interface with other simulation techniques to
simulate complex human motions. We believe that the planner would find a path in most cases
and is fast enough for practical use in a wide range of computer graphics applications.

1 Introduction

Collision free path planning has applications in a variety of fields such as robotics task planning,
computer aided manufacturing, human figure motion stndies and computer graphics simulations.
A collision free path for an articulated figure is the path along which the articulated figure moves
from an initial configuration to a final confignration without hitting any obstacles residing in the
same environment as the articulated figure.

A great deal of research has been devoted to the motion planning problem in the area of
robotics within the last 10 years, e.g. {16] [17] [18] [5] [6] [4] [8] [9] [14] [11]. However, despite the
applicability of motion planning techniques to compnter graphics simulations, the problem has not
been addressed much in the computer graphics community [13].

In this paper, we are going to present a motion planning system for anthropometric figures.
Computer graphics human figure modeling has been used in different engineering applications like
car occupant studies, space station design, product safety studies and maintenance assessment.
An efficient system for task level simulation of human figures should possess antomatic collision
free path generation capability as this will alleviate the burden of the user to specify every key
movement in the task study. Our motion planning system can also take into consideration the



strength data of human figures so that the planned motion will obey strength availability criteria
[15].

Human figures are articulated figures characterized by a branching tree structure with many
degrees of freedom (DOFs). Existing algorithms in robotics fall short in handling some of the issues
encountered when dealing with these types of figures. In this paper, we are going to present novel
algorithms that can address all these issues. The basic idea is that instead of treating all the DOFs
in the figure together, we divide them up into groups and treat these groups one by one. The
algorithm is not a complete algorithm, but rather an approximate one. We justify this trade off
in completeness for a gain in speed. The algorithm runs in O(n) where n is the total number of
groups in the figure rather than the conventional exponential time if all DOF's are treated together.

2 Background

Let us look at some of the related work done by robotics researchers. The major challenge of
our problem is to handle a redundant branching articulated figures with many degrees of freedom.
Many of the robotics algorithms deal with manipulators with relatively few degrees of freedom,
e.g. the mobile robots which typically have three degrees of freedom and the PUMA type of robots
which have six. Many of these algorithms are based on the use of the configuration space (C space)
which is the space of the degrees of freedom of the robot [16, 18]. The inherent difficulties with
this approach is due to the high dimensionality of the C space. It is well known that the worst
case time bound for motion planning for a robot arm is exponential in the dimensionality of its C
space [24, 25]. It is only during the last few years that motion planning algorithms that can handle
manipulators with many degrees of freedom have been presented [2, 1, 3, 12, 10].

However, very few of the work consider articulated figures with branches. Barraquand et al
gave an example involving a manipulator with 2 branches [2, 1, 3]. In their work, they create an
artificial potential field in the 3-D workspace and the free path is found by tracking the valleys. A
gain in efficiency is obtained as a result of the clever selection of potential functions and heuristics.
However, it is not clear how these can be selected in general.

Faverjon et al[10] presented a. method which partitions the free space into octrees and uses some
probability measures to cut down the search tree during the A* search. Gupta [12] has presented
another technique to handle sequential linkages with many degrees of freedom. It is a sequential
search technique which basically treats the individual degrees of freedom one by one instead of
considering all of them together. The initial stage of our path planner is based on his work.

In this paper we are going to present a path planning system that can provide a satisfactory
and efficient solution to the collision avoidance problem for redundant branching articulated figures
such as the human figures. The path found will also obey the strength limits of the human figures.

Finally examples are presented to demonstrate the usefulness of the system in producing realistic
human motion simulations.

3 The Approach

The main idea of our path planner is to handle the DOF's of the articulated fignre not all at once
but a certain number at a time. Gupta devised a sequential strategy that plans the motion of a
sequential linkage by considering one DOF at a time [12). We extend the idea further and introduce
the notion of Cspace groups (C groups). We also come up with novel algorithms that can handle
articulated figures with branches and many degrees of freedom.
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Figure 1: Different modules and their associated algorithms in the path planning system

The general principle of our path planner is first to divide up the DOFs in the articulated figure
into a number of groups which we call Cspace groups. We then compute the collision free motion
for the DOFs in each group successively, starting from the first group. After the motion of the
DOFs in group i has been planned, we parameterize the resulting motion with a parameter . The
motion for the DOFs in group 7 4+ 1 will then be planned along this path by controlling the DOFs
associated with it. The problem is then posed in a t x 6* space if there are kK DOF's in this group.
We proceed in this manner along the whole figure structure and solve for the motion for all the
groups. Finally a playback routine is invoked to playback the final collision free path for the figure.

Qur system adopts a modular design in that it is made up of a number of modules each of which
is based on an algorithm (Fig. 1). Each module carries out a particular function and contributes
to the whole path finding process.

On a more global perspective, the path finding procedure can be viewed as consisting of two
phases: the computation phase and the playback phase. All of the steps involved in these phases
are performed by the algorithms described in later sections.

The overall path planning procedure is outlined as follows:

e Computation Phase:

1. Partition the degrees of freedom of the articulated figure into Cspace groups according
to a grouping scheme.

2. Impose an order of traversal among the Cgroups. For human figure, we use a depth first
traversal. This means we plan the motion for one arm and then another.

3. Invoke the control algorithm that handles traversal of the tree and finds the final collision
free path. This algorithm will actually call upon a subsidiary algorithm, sequential
algorithm, to compute the free path along a branch of the tree structure. The sequential
algorithm will in turn call another subsidiary algorithm, the basic algorithm, to compute
the path for the DOFs within each Cgroup.

¢ Playback Phase:

After all the Cspace groups have been considered, a special playback algorithm will be called
upon to traverse the tree structure in a reverse order, collect and coordinate all the computed
information and finally playback the overall collision free path in discrete time frames. These
time frames can be futher interpolated to produce a smooth simulation.
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Figure 2: The redundant branching articulated figure considered in this work

The translational movement of the articulated figure as a whole on a plane can also be planned
with our planner. In this case, the figure resembles a. mobile robot with two degrees of translational
freedom and one degree of rotational freedom. The module that handles this case is named the
Planar Algorithm.

Fig. 2 shows the general redundant branching articulated structure that we will use for reference
in the description of our path planning algorithms. The fignre also shows the symbols that we will
be using in our explanations. Qur discussions will mainly focus on the upper body of the human
figure. The system can be easily applied to the legs to provide stepping movement, as shown in
our last rock climbing example (Fig. 18).

4 The Basic Algorithm

The particular algorithm we have chosen is the one presented by Lozano-Perez in [17] due to its
simplicity and intuitiveness. It first constructs the C space for the articulated figure. For the sake
of completeness, the process is described below.

If the manipulator has n links, its configuration space can be constructed as follows:

1. 2= 1.
2. While (i < n) do

(a) Ignore links beyond link ¢, and find the ranges of legal values of ¢; by rotating link
¢ around the position of joint ¢ determined by the current value ranges of ¢,...,qi—1
and check for collision with the surrounding obstacles. Self collision can be avoided by
checking collision with linkages from the same figure as well. This is for handling self



Figure 3: A Sequential linkage

collision in the figure. Mark those joint valnes at which link ¢ will have a collision as
forbidden.

(b) Sample the legal range of ¢; at the specified resolution.
(¢) Increment i and repeat step (a) for each of these valne ranges.
The free space is then represented by the data structure called regions to explore the connectivity

between the cells. A graph is then built on these region nodes and an A* search is conducted to
search for a free path from the start node to the goal node.

5 The Sequential Algorithm

5.1 Overview

The Sequential Algorithm handles the motion planning problem for the Cspace groups along a
sequential branch. This algorithm is based on Gupta’s work. We will discuss some of the differences
after presenting the algorithm.

5.2 The Algorithm

Referring to Fig. 3, let n be the total number of Cspace groups on this branch. Let the joint DOFs
associated with the groups be represented by ¢;; where ¢ is the group number and j is from 1 to m;
where m; is the maximum number of DOFs group ¢ has. Let r; be the reference vertex for group
i. It is basically the distal vertex of the link associated with the DOFs in the group i. Let r;(7)
denote the trajectory of the reference vertex r;. The initial and goal configurations of the arm are
given as ¢; and qu, i=1l.n; 7 = 1.m,.

The algorithm is as follows:

1. Compute a collision free trajectory for the links associated with gronp 1. The trajectory of
the reference vertex on its link will be r ().

2. 1= 2.

3. While (i< n)



Figure 4: An example showing the case that a path can only be found with backtracking which
means the parameter takes on a non-temporal interpretation.

53

(a) along r;_1(t), discretize the path according to a pre-specified resolution. Compute a
collision-free trajectory for the DOFs in the ith group from ¢f; to qu for j = 1..m; using
the basic algorithm described in the last section.

(b) given q1;(t), q25(1), ..., 4i;(1), compute r;(t) using forward kinematics.

(¢) Increment i.

Interpretation of the Parameter

The parameter used in parameterizing the path already computed can be either interpreted as
temporal or non-temporal. For a temporal interpretation of the parameter, the path computed
has to be monotonic with respect to the parameter 1 simply becanse we cannot travel backward in
time. Hence backtracking is not allowed and the chance of finding a path is greatly restricted. In
the example shown in Fig. 4, we will not be able to come up with a path without backtracking.

In our system, we have adopted a non-temporal interpretation of the parameter in most cases

as this will increase the chance of finding a path.

5.4

Discussion

e Gnpta considered one DOF at a time in his work. We extend this idea further and introdunce

the notion of Cspace groups (C groups). Each C group deals with one parameter and a
certain number of DOFs. The number of DOFs can vary between C groups so as to fit into
the structure of the figure. For example, the shoulder joint can be handled by one C gronp
with 3 DOFs.

The number of DOFs handled at a time also affects the degree of optimality of the resulting
path (with respect to some criteria). Theoretically, the optimal path can only be obtained
by searching through the n-dimensional C space built from considering all n DOFs together.
However, such an algorithm has been proven to be exponential in the dimensionality of its C
space [24]. That is also the reason that motivates us to treat a snbset of the DOFs at a time.
Apparently, there is a trade off between speed and optimality. The compromise selection from
the spectrum of choices is usnally dictated by the hardware available as well (Fig. 5).

Dealing with more than 1 DOF at a time also greatly enhances the chances of finding a free
path. With a higher dimensional space, backtracking is easier and more room is available for
exploration.

Gupta has chosen to use wisibility graph for representing the free space and searching for a
solution. The path found will have the undesirable effect of being very close to an obstacle.
This will leave very little room for the next link to manuever (Fig. 6). Our choice of using
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(b)

Figure 6: (a) A path that is too close to an obstacle. This leave little room for the next linkage to
maneunver. (b) A better path that is farther away from the obstacle

6.1

the region graph allows for the path to be positioned farther away from the obstacles, hence
leaving more room for the next linkage.

The Control Algorithm
The Control Algorithm (A1)

. Apply Algorithm ASUB1 (the Planar Algorithm, see next section) to the whole fignre to

obtain the planar collision free translational movement of the figure taken as a whole.

. Parameterize the resulting motion. The normalized constant for this motion is called s;,:4i01-

. Apply Algorithm A2 (the Sequential algorithm) to branch by with s;pisi0 as the first parameter

for the first group of the branch, i.e. gronp goo.

. Parameterize the resnlting path computed for group gg,, according to some prespecified

resolution. The normalized parameter is named sg. The trajectory of the reference point on
branch bg is referred to as rq(1).

s =l

. While ( < n) do

() Apply Algorithm A2 to branch b;. Use s;_y as the parameter for the first group of this
branch, i.e. group gio.

(b) Parameterize the resnlting path with some prespecified resolntion.



(¢) Invoke the Algorithm A4 (the Playback Algorithm) to branch b; to obtain the sequence
of joint angle values of branch b; when moving along the computed path.

(d) Record this sequence of joint angle values in the array FREEANGLES;[1..N¢,..] where
Nyree is the total number of joint angle values recorded along this path.

(e) A normalized parameter, s;, is defined to index into the array FREEANGLES; through
the linear mapping;:

Map(s;) : {0.1} - {1..Ny,.e }
(f) Increment i

7. (Now ¢ = n, the last branch) Apply Algorithm A2 (the Sequential algorithm) to branch b,.
Discretize the resulting path according to some resolution.

8. Apply Algorithm A4 (the playback algorithm) to the whole figure, starting from this very
last group of the very last branch.

9. The angle values obtained can then written into frames for continuous playback.

7 The Planar Algorithm (ASUB1)

The articulated figure can translate and rotate on a plane, navigating around obstacles. The whole
figure behaves just like a. mobile robot. The path planning algorithm in this case deals with a
3-dimensional (2 translational, 1 rotational) Cspace. We can handle this case simply with our basie
algorithm (A3) or other existing mobile robot path planning techniques.

8 Resolving Conflicts between Different Branches

Although the different branches are attached to the same rear link of branch by, we do not use
the same parameter to, that parameterizes the motion of branch by in all these branches. The
reason is that the parameters 1;; are interpreted as non-temporal in general. Hence, backtracking
is allowed and the values of ;; along the computed path can be nonmonotonic. If we use the same
parametfer in computing the motion for the first groups in all other branches, some of the joint
angle values cannot be obtained uniquely during the final playback phase. This reasoning may
become clear after looking at the playback algorithm.

Qur solution to this problem is to further parameterize the already parameterized path of the
previous branch. This is described in step 6(e) of the Control Algorithm listing in the last section
and is further explained below.

Let us look at Fig. 7(a). After we have computed motion for branch by, we parameterize the
resulting path with the parameter #o,,. We create another variable sq here and set it equal to #q .
The curved path shown in the diagram represents the computed motion for branch by. Next, we
go on to compute the path for branch b;. The parameter value used in the first group, i.e. #;1, is
assigned to be sq which is the parameter passed along from the previous branch. We proceed in a
similar manner and compute the path for the whole branch. The resulting configuration space and
the free path for the last group of the branch, i.e. g1 ,,, may look like the one in Fig. 7 (a).

As we follow the computed path, it can be seen that the values taken by the parameter t,,,
along the path are not necessarily monotonic. We choose to parameterize this path again before
going on to compute the path for the next branch. We will call this parameter along the path s,
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Figure 7: (a) Diagram above shows the parameterized path of the torso and the computed path
for branch b,. Diagram below shows the corresponding Cspace for the last group of branch by (b)
The Cspace and computed path for the first group of the branch b,.

and it is this parameter that we are nusing when dealing with the first Cspace group of the next
branch as shown in Fig. 7 (b).

9 Playing back the free path

During the playback phase, we start from the last group of branch b, and then traverse the branches
in a. backward manner along branch b,_1, b,,—2 and so on and finally to branch b.

For example, let Fig. 8 (a) represent the configuration space for the last group of the last branch,
i.e. group gnp, of branch b,,. We then discretize the free path according to a pre-specified playback
resolution. The number of discretization intervals for this last group will be equal to the number
of time frames for the final simulation.

At every discretized point, say A, there is a corresponding (q,%) pair: the ¢ value is what we
should set the last joint DOF to, and the parameter 1.is used to deduce the motion of the preceding
group. We first set the last DOF to the q value. Then we use the parameter ¢ in the pair to trace
back to the preceding (proximal) group. Note that within this preceding group, the parameter # is
monotonic by defintion. Hence we can uniquely determine the corresponding (q,%) pair within this
preceding group. By the same token, we can continue tracing back to the groups further preceding
this one (Fig. 8 (a)). We carry on in this fashion recursively until we come to the first group within
this branch.

Note that at this point, all joint DOFs along this branch will have been set to their correct value
for this simulation time frame. The sequence of joint values along the free path for all the other
branches should have also been recorded in the array FREEANGLES;. The parameter value left
unused is the first parameter of the first group of the last branch, i.e. #, ;. It is actnally the same
as Sp—1 as described in the last section. As discnssed then, it is monotonic in values by definition.
Hence, we can use this as an index into the recorded joint angle array and wniquely determine the
set, of angles corresponding to the movement of the preceding branch.
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Figure 8: An example showing how the final joint angle valnes of the whole fignre are obtained
from the Cspace associated with the Cspace groups.

After setting the angles in branch b,_;, we proceed to treat all other branches in a similar
manner.

The details of the playback algorithm is as follow:

9.1 The PlayBack Algorithm (A4)

For easy nunderstanding, we will explain the algorithm by looking into its two components separately:
the Final Playback Algorithm (A4a) and the Single Branch Single Frame Playback Algorithm (A4b).

9.1.1 The Final Playback Algorithm (A4a)

In this algorithm, we enter into a simulation loop and will generate all the time frames for this
simulation. The variable k in the outer loop can be thought of as the frame index.

¢ Discretize the path computed for the last group in the last branch into Ny, discrete points
according to some pre-specified resolution. This is illustrated in the diagram on the right in
Fig. 8 (a). This number also determines the total number of key postures or time frames we
will generate for the final simulation.

o Let k =1.
e While (k < Nf;.,,/,,,l ) do

1. Apply Algorithm A4b (the Single Branch Single Frame Playback Algorithm) to branch
bn, the last branch in the figure.

2. The parameter value, %, 1, will be obtained at the termination of the Algorithm A4b.
We then use this parameter as an index into the array FREEANGLES,_;. The joint

angles recorded for branch b,_1 will be read off from the array element pointed to by
this parameter value.

10



9.1.2

. Set the joint angles in branch b,_y to the values read off from the array.

Let z = t,_11, the first parameter value of branch b,_;, which is also read off from the

array FREEANGLES, 1.
Let ¢ = m — 2, the third last branch in the articulated figure.

. While (i > 0) do

(a) Use the value of 2 as an index into the array FREEANGLES;. Read off the joint
angle values stored in the array elements.

(b) Set the joint angles in this branch to the values obtained from the previous step.
(¢) Set z = t;1, the first parameter which is also read off from the array FREEANGLES;.
(d) Decrement 3.

. Now we have finished setting the values for all the branches except the first branch by.

Apply Algorithm A4b to this branch to get back its computed joint angles values and
set the corresponding joints to these valnes.

. Now all the joint angles in the articulated figure have been set to their appropriate values

in this time frame. What is left is the position of the whole figure. The last parameter
value obtained from the last step is used to index into the path computed from the
Planar Algorithm. Then we set the whole figure location to that indexed position.
Advance the simulation time step by incrementing & and repeat the whole playback
process for the next time frame.

The Single Branch Single Frame Playback Algorithm (A4b)

Let the branch index we are considering be i. Here branch i has a total of p; groups. This playback
algorithm is called only after the motion for the last group in the branch is computed.
We present the algorithm as follow:

1.

This algorithm only deals with one discretized point, and hence only one time frame. Let
this discretized point be the kth point on the path.

. Let j = pi. j here is the gronp number index. We start from the last group in the branch

and go down the branch by decrementing j.

Let r = k. r is used as a loop variable to pass down the time frame index down the branch.

While (j > 0) do

(a)

(b)

(c)

(d)

(e)
()

From the rth discrete point on the computed path, read off the values of the ¢ ;s
associated with this Cspace group from the axes of the Cspace. This is illustrated
in Fig. 8 (a) with a 2-dimensional Cspace as an example.

Set the joints in the articulated chain corresponding to these gs variables to the values
we have just found.

Then read off the normalized parameter value #; ; from the ¢ axis.

Through a linear mapping, we can obtain the corresponding discretized point on the
path computed for group g; j_1 from this parameter value.
Set r = index

Decrement j

Note after this algorithm terminates, all the joint angles on the this branch will be set to the
appropriate values for this simulation time step.
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Figure 9: The procedure for setting the angles in the final playback phase. (a,b) shows cases where
no backtracking is used. (¢,d) show cases where backtracking occurs in one branch

10 Further explaining the conflict between different branches

Now that the playback mechanism is explained, we can explain in more detail the potential conflict
that can happen between branches attached to the same linkage.

Let us look at Fig. 9. Fig. 9 (a) shows the Cspace for the first group of branch b,,_1, the second
to last branch. Fig. 9 (b) shows the one for the first group of branch b, which is the last branch of
the tree.

Recall the previous argnment that since the two branches are attached to the same linkage by,
we may be tempted to use the same parameter g ,, in computing the motion for both branches. If
this is the case, then #,,_11 = 1,,1. Let us see what kind of potential conflict can resnlt from this
arrangement.

During the playback phase, when we come to the first gronp of the last branch, (i.e. group gn
of branch b,,) we read off the parameter value 1,1 from the horizontal axis (point A in Fig. 9 (b)).
Since this is equal in value to #,_1 3, point B must be the corresponding point for branch b,_,
(Fig. 9 (a)). Then the corresponding value of g can be read off from the vertical axis.

This looks fine in Fig. 9 (a) and (b). However, since we have allowed the parameters ;; to be
nontemporal, they need not be monotonic along the computed path. This can create a problem
as shown in Fig. 9 (¢) where backtracking is adopted to find a path. When using the #,1 value
obtained in Fig. 9 (d) to get the corresponding point for the branch b,_; shown in Fig. 9 (¢), we
get multiple values and several possibilities. This is still solvable by keeping track of the history
of points obtained so far and look for the nearest match. For example, points B1, B2 are the
corresponding match for points Al, A2. Then naturally point B3 (shown in diagram (c)) should
be the one for A3.

This may work in some cases but not in cases where backtracking is adopted in both Cspaces
as shown in Fig. 10 (a) (b). In this case, we can find only only one match point in Fig. 10 (a) (for

12
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Figure 10: (a,b) A conflict oceurs resulting in no feasible solution. (c,d) A solution for resolving
such conflicts

point A3) which however is not a feasible match as the middle segment of the compunted path will
be truncated.

The solution to all these problems is to add another level of parameterization. Instead of nsing
the same parameter value in both Cspaces, we nuse the parameter obtained from parameterizing the
first. path in computing motion for the second one. As shown in Fig. 10 (¢) and (d), the parameter
tn,1 can now be nsed to uniquely determine the corresponding match point as its value is gnaranteed
to be monotonic along the first path by its defintion.

11 Strength Guided Motion

Lee et al [15] have demonstrated that realistic animation of lifting motions can be generated by
considering the strength of the human figure. The basic premise of the method is that a person
tends to operate within a comfort region which is defined by the amount of available torque. Their
method makes use of a strength model of the human body. The path planner incrementally updates
the next joint angles valnes according to the awvailable torque at the current configuration based on
a number of motion strategies.

However, their method does not consider any obstacle avoidance during the path planning
process, and it is not obvious how the method can be extended to handle the issue. We are here
proposing a solntion that incorporate the strength model into our collision free path planner in a
bottom up fashion. The problem poses a wnique challenge that has not been addressed before.

11.1 Computation of Required Torque

The static torque values at all the joints required to sustain a load is a function of all its joint
angles. That is, it is a function of the figure configuration.

13
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Figure 11: An illustration for the torque computation method

The methodology employed by our algorithms is to divide up the degrees of freedom into gronps
and plan the motion for each group sequentially. Therefore, only after the complete algorithm
terminates do we have the complete path for each degree of freedom. However, we need to make
use of the strength information during the planning process. This requires values of all joint angles
at a certain configuration. Since we would have computed only a subset of all the joint angles, we
need to have a procedure to realistically estimate the rest of the joint angles at this configuration.

This is illustrated in Fig. 11 in which a 3 link manipulator is taken as an example. The
manipulator has 3 joint angles: ¢q1,q2 and g3. Assume we are planning the joint angles one at a
time and we have planned the motion for joint 1. Now we are planning the motion of joint 2. To
compute the required torque at a certain point, say point A, we need the values of all 3 angles at
that point. As shown on the diagram, ¢, can be read off directly from the axis. ¢; can be obtained
through the current value of the parameter £. However, g3 is still unknown.

The solution is to use the value of the current parameter and project it over to the rest of the
angles that have not yet be computed. Referring to Fig. 12, let the set of angles we have computed
be denoted & and those that are yet to be computed be ¥. Let the value of the normalized
parameter we are currently working with be 7. We obtain the projected values for the angles in ¥
by using the following projection function:

Vo eV, 0, = PROJ(1)
where PRO.J(t) is :

PRO.J(1) : {0..1} — {Binitiai--0finai}

The projection function PRO.J can be a simple linear interpolation mapping as:

14



Figure 12: The two set of angles, one computed and the other to be computed

PROJ(t) = O;pitinl + f,(eﬁm,,z — Oinitial)

Beside linear interpolation, other types of interpolation relationship may be explored. For
example, a quadratic relationship may be unsed instead as shown on Fig. 13. This implies that the
particular degree of freedom under consideration will spend more time near its final value than its
initial value.

We can explore this idea further by using a different interpolation relationship for each joint
based on its movement characteristics.

11.2 The Strength Function used in Heuristic Search

Recall that in the searching process using the A* algorithm, we evalnate a heuristic function at
every step and expand the node that has the smallest value. So far we have been using only a
distance function in this henristic function. The path found will be optimal up to the size of the
regions used.

Now that we have a means to compute the required torque value of a particular configuration,
we can add to this heuristic function terms that represent the strength information. The weighing
factors attached to these terms represent the relative importance of the quantities they represent.
Possible terms to include are as follow:



(a) (b)
Figure 13: Different projection schemes: (a) a linear interpolation (b) a quadratic interpolation

L3

11.2.1 Work Done

The total work done or energy expanded can be measured by the term [7T(6) - df. The integration
is done over the path taken.

11.2.2 Comfort

The comfort level of the resulting motion can be measnred by the available torque which is the
amount obtained by subtracting the required torque from the strength limit at that particular joint
configuration. We can sum up all the contributions along the path as fAvailTorque(B_.) - df where
the available torque is defined in terms of its elements:

- -

Str(6); — T(8); if Str(8); > T();

0 otherwise

AvailT()rque(é.),- = {

The subscript ¢ stands for the i-th element in the vector. Str is the strength limit vector. This
integral value will then represent the overall comfort level.

This term will properly be usefnl only in the g function as it only affects future actions.

11.2.3 Fatigue

Humans are not like robots in that their strength will decrease with time as a result of fatigne. We
may include a term like []|T(8)||d# to avoid taking a path that has a high torque value maintained
over a prolonged period of time. Since we do not maintain an explicit notion of time, the normalized
parameter value can be used as an approximation.

11.3 Regions vs. Uniform Grids

Recalling the fact that once we have mapped the obstacles onto the configuration space, we group
the cells in the free space into basic entities called regions to maximize the usage of the connectivity
between the cells. This has the advantage of having a smaller number of nodes in the graph to
search for. Nevertheless, the use of regions instead of a uniform grid will also reduce the granularity
of the C space and hence will have fewer possible paths.

Since we use regions as the basic entities, we choose representative paths within the regions
and evaluate the integrations of the different strength measure components mentioned in the last
section along these chosen paths. Fig. 14 (a) shows a sample Cspace with four regions. Region



(b)

Figure 14: (a) Part of a sample C space showing two possible paths leading from the start to the
goal node. (b) the corresponding regions graph.

Rg is the start region and regiion R is the goal region. The figure also shows the chosen paths
within the four regions. Typically a path is made up of straight line segments and is chosen to go
from one side of the region boundary to the next through the region kernel (the center area of the
region). Integration is computed along the path with pre-specified increments.

11.4 Finding a Smooth Optimal Path

The path found so far is the best path fonnd up to the size of the regions (the basic entities). Paths
within regions are chosen by the system rather than by the search process. We can further refine
this computed path by treating it as a feasible path. For example, in Fig. 14 (a), the left path
may be chosen to be a better one than the one on the right. This path can then be further refined
by examining local strength values and comfort level and by invoking one of the motion heuristics
such as Available Torque, Reducing Moment and Pull Back as described in [15].

12 Hybrid Simulation Techniques

We believe that simulating the wide range of human motions reqnires a number of different simu-
lation techniques, such as those that simulate walking [7, 19], grasping [23], lifting [15]. Therefore,
it is important that our simulating techniques can interface with other existing techniques in simu-
lating more complex human behaviors. Fig. 18 shows a human figure climbing up a rocky surface.
The limbs’ climbing movement and the torso translation are prodnced from our path planning
system. At one time, only one limb is considered by the path planner. The other three limbs are
held in place by imposing a hold constraint to them [22]. The positions for the hand grasp and
foothold have to be specified by the user. In this case, even though onr path planner cannot handle
closed loop systems, , with the help of other simulation techniques, motions that involve closed
loop mechanism can still be simulated.



13 Results and Discussions

Fig. 15 shows a human figure reaching through two apertures with both arms. The path computed
is collision free and involves more than 20 DOFs. Fig. 16 shows a human figure lifting two objects
from the lower shelves of a chest to the upper shelves with both arms. Fig. 17 shows a human
figure lifting objects on a different shelf. The examples are run on a Silicon Graphics Personal Iris
workstation under the Jack™ environment - a graphics environment developed for human figure
modeling at the Computer Graphics Research Laboratory at Penn {20, 21]. The examples shown
here take about 12 to 30 mintues wall clock time to compute, depending on the complexity of the
environment.

The main advantages of our algorithm described here are that it can deal with redundant
articulated figures with branches and many degrees of freedom. It can also incoporate the strength
data for human fignres to produce strength guided motions.

The algorithm cannot handle closed loop mechanisms. It is an approximate algorithm, not a
complete one, in the sense that it may not succeed to find a path even though there exists one.
However, We can still get around this apparent disadvantage by regronping the DOFs under a
different grouping scheme and try finding the solution again if a path cannot be found for the
previous gronping scheme. Backtracking can be employed between groups too.

The basic algorithm within a Cspace group is O(r*~'(mn)?) where k is the number of DOFs,
r is the discretization intervals, m is the number of faces and edges for the robot and n for the
environment as shown in [17]. Since the number of DOFs in a Cspace group is bounded, the run
time for the basic algorithm can be treated as a constant. Consequently the whole algorithm runs
in O(p) time where p is the total number of groups in the tree structure.

We believe that the run time of the algorithm is fast enough for practical use and that it
will contribute to applications in robotics task level planning and computer graphics human figure
motion simulations.
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Figure 15: A human figure reaching throngh two apertures with both arms.

21



P2hins,

computation:  20n=
graphics!  270ns
290ms, | d.dffspe

¢§u§Utatiun:”i:1ﬂﬁs |
graphics: = 270ms
diGflisec

Figure 16: A human figure lifting objects from the lower shelves of a chest to the upper shelves.
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