12 research outputs found
Hospital-onset clostridium difficile infection rates in persons with cancer or Hematopoietic stem cell transplant: A C3IC network report
A multicenter survey of 11 cancer centers was performed to determine the rate of hospital-onset Clostridium difficile infection (HO-CDI) and surveillance practices. Pooled rates of HO-CDI in patients with cancer were twice the rates reported for all US patients (15.8 vs 7.4 per 10,000 patient-days). Rates were elevated regardless of diagnostic test used
Distributed evolutionary algorithms and their models: A survey of the state-of-the-art
The increasing complexity of real-world optimization problems raises new challenges to evolutionary computation. Responding to these challenges, distributed evolutionary computation has received considerable attention over the past decade. This article provides a comprehensive survey of the state-of-the-art distributed evolutionary algorithms and models, which have been classified into two groups according to their task division mechanism. Population-distributed models are presented with master-slave, island, cellular, hierarchical, and pool architectures, which parallelize an evolution task at population, individual, or operation levels. Dimension-distributed models include coevolution and multi-agent models, which focus on dimension reduction. Insights into the models, such as synchronization, homogeneity, communication, topology, speedup, advantages and disadvantages are also presented and discussed. The study of these models helps guide future development of different and/or improved algorithms. Also highlighted are recent hotspots in this area, including the cloud and MapReduce-based implementations, GPU and CUDA-based implementations, distributed evolutionary multiobjective optimization, and real-world applications. Further, a number of future research directions have been discussed, with a conclusion that the development of distributed evolutionary computation will continue to flourish
Artificial Differences in Clostridium difficile Infection Rates Associated with Disparity in Testing
In 2015, Clostridium difficile testing rates among 30 US community, multispecialty, and cancer hospitals were 14.0, 16.3, and 33.9/1,000 patient-days, respectively. Pooled hospital onset rates were 0.56, 0.84, and 1.57/1,000 patient-days, respectively. Higher testing rates may artificially inflate reported rates of C. difficile infection. C. difficile surveillance should consider testing frequency
Artificial differences in Clostridium difficile infection rates associated with disparity in testing
In 2015, Clostridium difficile testing rates among 30 US community, multispecialty, and cancer hospitals were 14.0, 16.3, and 33.9/1,000 patient-days, respectively. Pooled hospital onset rates were 0.56, 0.84, and 1.57/1,000 patient-days, respectively. Higher testing rates may artificially inflate reported rates of C. difficile infection. C. difficile surveillance should consider testing frequency
Artificial Differences in Clostridium difficile Infection Rates Associated with Disparity in Testing.
In 2015, Clostridium difficile testing rates among 30 US community, multispecialty, and cancer hospitals were 14.0, 16.3, and 33.9/1,000 patient-days, respectively. Pooled hospital onset rates were 0.56, 0.84, and 1.57/1,000 patient-days, respectively. Higher testing rates may artificially inflate reported rates of C. difficile infection. C. difficile surveillance should consider testing frequency