66 research outputs found

    Markov chain Monte Carlo analysis of Bianchi VII_h models

    Full text link
    We have extended the analysis of Jaffe et al. to a complete Markov chain Monte Carlo (MCMC) study of the Bianchi type VIIh{\rm VII_h} models including a dark energy density, using 1-year and 3-year Wilkinson Microwave Anisotropy Probe (WMAP) cosmic microwave background (CMB) data. Since we perform the analysis in a Bayesian framework our entire inference is contained in the multidimensional posterior distribution from which we can extract marginalised parameter constraints and the comparative Bayesian evidence. Treating the left-handed Bianchi CMB anisotropy as a template centred upon the `cold-spot' in the southern hemisphere, the parameter estimates derived for the total energy density, `tightness' and vorticity from 3-year data are found to be: Ωtot=0.43±0.04\Omega_{tot} = 0.43\pm 0.04, h=0.32−0.13+0.02h = 0.32^{+0.02}_{-0.13}, ω=9.7−1.5+1.6×10−10\omega = 9.7^{+1.6}_{-1.5}\times 10^{-10} with orientation Îł=337∘−23+17\gamma = {337^{\circ}}^{+17}_{-23}). This template is preferred by a factor of roughly unity in log-evidence over a concordance cosmology alone. A Bianchi type template is supported by the data only if its position on the sky is heavily restricted. The low total energy density of the preferred template, implies a geometry that is incompatible with cosmologies inferred from recent CMB observations. Jaffe et al. found that extending the Bianchi model to include a term in ΩΛ\Omega_{\Lambda} creates a degeneracy in the Ωm−ΩΛ\Omega_m - \Omega_{\Lambda} plane. We explore this region fully by MCMC and find that the degenerate likelihood contours do not intersect areas of parameter space that 1 or 3 year WMAP data would prefer at any significance above 2σ2\sigma. Thus we can confirm that a physical Bianchi VIIh{\rm VII_h} model is not responsible for this signature.Comment: 8 pages, 10 figures, significant update to include more accurate results and conclusions to match version accepted by MNRA

    A Bayesian study of the primordial power spectrum from a novel closed universe model

    Full text link
    We constrain the shape of the primordial power spectrum using recent measurements of the cosmic microwave background (CMB) from the Wilkinson Microwave Anisotropy Probe (WMAP) 7-year data and other high-resolution CMB experiments. We also include observations of the matter power spectrum from the luminous red galaxy (LRG) subset DR7 of the Sloan Digital Sky Survey (SDSS). We consider two different models of the primordial power spectrum. The first is the standard nearly scale-invariant spectrum in the form of a generalised power-law parameterised in terms of the spectral amplitude AsA_{\rm s}, the spectral index nsn_{\rm s} and (possibly) the running parameter nrunn_{\rm run}. The second spectrum is derived from the Lasenby and Doran (LD) model. The LD model is based on the restriction of the total conformal time available in a closed Universe and the predicted primordial power spectrum depends upon just two parameters. An important feature of the LD spectrum is that it naturally incorporates an exponential fall-off on large scales, which might provide a possible explanation for the lower-than-expected power observed at low multipoles in the CMB. In addition to parameter estimation, we compare both models using Bayesian model selection. We find there is a significant preference for the LD model over a simple power-law spectrum for a CMB-only dataset, and over models with an equal number of parameters for all the datasets considered.Comment: minor corrections to match accepted version to MNRA

    WMAP 3-year primordial power spectrum

    Get PDF
    We constrain the form of the primordial power spectrum using Wilkinson Microwave Anisotropy Probe (WMAP) 3-year cosmic microwave background (CMB) data (+ other high resolution CMB experiments) in addition to complementary large-scale structure (LSS) data: 2dF, SDSS, Ly-alpha forest and luminous red galaxy (LRG) data from the SDSS catalogue. We compute the comparative Bayesian evidence in addition to parameter estimates for a collection of seven models: (i) a scale invariant Harrison-Zel'dovich (H-Z) spectrum; (ii) a power-law; (iii) a running spectral index; (iv) a broken spectrum; (v) a power-law with an abrupt cutoff on large-scales; (vi) a reconstruction of the spectrum in eight bins in wavenumber; and (vii) a spectrum resulting from a cosmological model proposed by Lasenby & Doran (L-D). Using a basic dataset of WMAP3 + other CMB + 2dF + SDSS our analysis confirms that a scale-invariant spectrum is disfavoured by between 0.7 and 1.7 units of log evidence (depending on priors chosen) when compared with a power-law tilt. Moreover a running spectrum is now significantly preferred, but only when using the most constraining set of priors. The addition of Ly-alpha and LRG data independently both suggest much lower values of the running index than with basic dataset alone and interestingly the inclusion of Ly-alpha significantly disfavours a running parameterisation by more than a unit in log evidence. Overall the highest evidences, over all datasets, were obtained with a power law spectrum containing a cutoff with a significant log evidence difference of roughly 2 units. The natural tilt and exponential cutoff present in the L-D spectrum is found to be favoured decisively by a log evidence difference of over 5 units, but only for a limited study within the best-fit concordance cosmology.Comment: 7 pages, 8 figures, changes and new results to match version accepted by MNRA

    Scale dependence of the primordial spectrum from combining the three-year WMAP, Galaxy Clustering, Supernovae, and Lyman-alpha forests

    Full text link
    We probe the scale dependence of the primordial spectrum in the light of the three-year WMAP (WMAP3) alone and WMAP3 in combination with the other cosmological observations such as galaxy clustering and Type Ia Supernova (SNIa). We pay particular attention to the combination with the Lyman α\alpha (Lyα\alpha) forest. Different from the first-year WMAP (WMAP1), WMAP3's preference on the running of the scalar spectral index on the large scales is now fairly independent of the low CMB multipoles ℓ\ell. A combination with the galaxy power spectrum from the Sloan Digital Sky Survey (SDSS) prefers a negative running to larger than 2σ\sigma, regardless the presence of low ℓ\ell CMB (2≀ℓ≀232\le \ell \le 23) or not. On the other hand if we focus on the Power Law Λ\LambdaCDM cosmology with only six parameters (matter density Ωmh2\Omega_m h^2, baryon density Ωbh2\Omega_b h^2, Hubble Constant H0H_0, optical depth τ\tau, the spectral index, nsn_s, and the amplitude, AsA_s, of the scalar perturbation spectrum) when we drop the low ℓ\ell CMB contributions WMAP3 is consistent with the Harrison-Zel'dovich-Peebles scale-invariant spectrum (ns=1n_s=1 and no tensor contributions) at ∌1σ\sim 1\sigma. When assuming a simple power law primordial spectral index or a constant running, in case one drops the low ℓ\ell contributions (2≀ℓ≀232\le \ell \le 23) WMAP3 is consistent with the other observations better, such as the inferred value of σ8\sigma_8. We also find, using a spectral shape with a minimal extension of the running spectral index model, LUQAS++ CROFT Lyα\alpha and SDSS Lyα\alpha exhibit somewhat different preference on the spectral shape.Comment: 16 pages, 13 figures Revtex

    Slow Roll Reconstruction: Constraints on Inflation from the 3 Year WMAP Dataset

    Get PDF
    We study the constraints on the inflationary parameter space derived from the 3 year WMAP dataset using ``slow roll reconstruction'', using the SDSS galaxy power spectrum to gain further leverage where appropriate. This approach inserts the inflationary slow roll parameters directly into a Monte Carlo Markov chain estimate of the cosmological parameters, and uses the inflationary flow hierarchy to compute the parameters' scale-dependence. We work with the first three parameters (epsilon, eta and xi) and pay close attention to the possibility that the 3 year WMAP dataset contains evidence for a ``running'' spectral index, which is dominated by the xi term. Mirroring the WMAP team's analysis we find that the permitted distribution of xi is broad, and centered away from zero. However, when we require that inflationary parameters yield at least 30 additional e-folds of inflation after the largest observable scales leave the horizon, the bounds on xi tighten dramatically. We make use of the absence of an explicit pivot scale in the slow roll reconstruction formalism to determine the dependence of the computed parameter distributions on the pivot. We show that the choice of pivot has a significant effect on the inferred constraints on the inflationary variables, and the spectral index and running derived from them. Finally, we argue that the next round of cosmological data can be expected to place very stringent constraints on the region of parameter space open to single field models of slow roll inflation.Comment: 26 pages, 11 figures, JHEP format. v2: version accepted by JCAP: minor clarifications and references added, 1 figure added, v3: 1 reference adde

    The Mock LISA Data Challenges: from Challenge 3 to Challenge 4

    Full text link
    The Mock LISA Data Challenges are a program to demonstrate LISA data-analysis capabilities and to encourage their development. Each round of challenges consists of one or more datasets containing simulated instrument noise and gravitational waves from sources of undisclosed parameters. Participants analyze the datasets and report best-fit solutions for the source parameters. Here we present the results of the third challenge, issued in Apr 2008, which demonstrated the positive recovery of signals from chirping Galactic binaries, from spinning supermassive--black-hole binaries (with optimal SNRs between ~ 10 and 2000), from simultaneous extreme-mass-ratio inspirals (SNRs of 10-50), from cosmic-string-cusp bursts (SNRs of 10-100), and from a relatively loud isotropic background with Omega_gw(f) ~ 10^-11, slightly below the LISA instrument noise.Comment: 12 pages, 2 figures, proceedings of the 8th Edoardo Amaldi Conference on Gravitational Waves, New York, June 21-26, 200

    Accelerated expansion from structure formation

    Get PDF
    We discuss the physics of backreaction-driven accelerated expansion. Using the exact equations for the behaviour of averages in dust universes, we explain how large-scale smoothness does not imply that the effect of inhomogeneity and anisotropy on the expansion rate is small. We demonstrate with an analytical toy model how gravitational collapse can lead to acceleration. We find that the conjecture of the accelerated expansion being due to structure formation is in agreement with the general observational picture of structures in the universe, and more quantitative work is needed to make a detailed comparison.Comment: 44 pages, 1 figure. Expanded treatment of topics from the Gravity Research Foundation contest essay astro-ph/0605632. v2: Added references, clarified wordings. v3: Published version. Minor changes and corrections, added a referenc

    Planck 2013 results. XXVII. Doppler boosting of the CMB : Eppur si muove

    Get PDF
    Peer reviewe
    • 

    corecore