63 research outputs found
SWAS observations of comet 9P/Tempel 1 and Deep Impact
On 4 July 2005 at 1:52 UT the Deep Impact mission successfully completed its
goal to hit the nucleus of 9P/Tempel 1 with an impactor, forming a crater on
the nucleus and ejecting material into the coma of the comet. The 370 kg
impactor collided with the sunlit side of the nucleus with a relative velocity
of 10.2 km/s. NASA's Submillimeter Wave Astronomy Satellite (SWAS) observed the
1(10)-1(01) ortho-water ground-state rotational transition in comet 9P/Tempel 1
before, during, and after the impact. No excess emission from the impact was
detected by SWAS. However, the water production rate of the comet showed large
natural variations of more than a factor of three during the weeks before the
impact.Comment: to appear in the proceedings of the IAU Symposium No. 231:
"Astrochemistry - Recent Successes and Current Callenges". Typo corrected in
author affiliation lis
Far Infrared Prperties of M Dwarfs
We report the mid- and far-infrared properties of nearby M dwarfs.
Spitzer/MIPS measurements were obtained for a sample of 62 stars at 24 um, with
subsamples of 41 and 20 stars observed at 70 um and 160 um respectively. We
compare the results with current models of M star photospheres and look for
indications of circumstellar dust in the form of significant deviations of
K-[24 um] colors and 70 um / 24 um flux ratios from the average M star values.
At 24 um, all 62 of the targets were detected; 70 um detections were achieved
for 20 targets in the subsample observed; and no detections were seen in the
160 um subsample. No clear far-infrared excesses were detected in our sample.
The average far infrared excess relative to the photospheric emission of the M
stars is at least four times smaller than the similar average for a sample of
solar-type stars. However, this limit allows the average fractional infrared
luminosity in the M-star sample to be similar to that for more massive stars.
We have also set low limits for the maximum mass of dust possible around our
stars.Comment: 28 pages, 4 figures, to be published in The Astrophysical Journa
The Spitzer Survey of Interstellar Clouds in the Gould Belt. III. A Multi-Wavelength View of Corona Australis
We present Spitzer Space Telescope IRAC and MIPS observations of a 0.85 deg^2
field including the Corona Australis (CrA) star-forming region. At a distance
of 130 pc, CrA is one of the closest regions known to be actively forming
stars, particularly within its embedded association, the Coronet. Using the
Spitzer data, we identify 51 young stellar objects (YSOs) in CrA which include
sources in the well-studied Coronet cluster as well as distributed throughout
the molecular cloud. Twelve of the YSOs discussed are new candidates, one of
which is located in the Coronet. Known YSOs retrieved from the literature are
also added to the list, and a total of 116 candidate YSOs in CrA are compiled.
Based on these YSO candidates, the star formation rate is computed to be 12 M_o
Myr^-1, similar to that of the Lupus clouds. A clustering analysis was also
performed, finding that the main cluster core, consisting of 68 members, is
elongated (having an aspect ratio of 2.36), with a circular radius of 0.59 pc
and mean surface density of 150 pc^-2.
In addition, we analyze outflows and jets in CrA by means of new CO and H_2
data. We present 1.3 mm interferometric continuum observations made with the
Submillimeter Array (SMA) covering R CrA, IRS 5, IRS 7, and IRAS 18595-3712
(IRAS 32). We also present multi-epoch H_2 maps and detect jets and outflows,
study their proper motions, and identify exciting sources. The Spitzer and
ISAAC/VLT observations of IRAS 32 show a bipolar precessing jet, which drives a
CO (2-1) outflow detected in the SMA observations. There is also clear evidence
for a parsec-scale precessing outflow, E-W oriented, and originating in the SMA
2 region, likely driven by SMA 2 or IRS 7A.Comment: Accepted for publication in ApJS. 112 pages, 42 figures (quality
reduced), 13 tables. Full resolution version can be found at
http://www.cfa.harvard.edu/~dpeterson/CrA/CrA_highres.pd
Spitzer/IRAC Photometry of M, L, and T Dwarfs
We present the results of a program to acquire photometry for eighty-six
late-M, L, and T dwarfs using the Infrared Array Camera (IRAC) on the Spitzer
Space Telescope. We examine the behavior of these cool dwarfs in various
color-color and color-magnitude diagrams composed of near-IR and IRAC data. The
T dwarfs exhibit the most distinctive positions in these diagrams. In M_5.8
versus [5.8]-[8.0], the IRAC data for T dwarfs are not monotonic in either
magnitude or color, giving the clearest indication yet that the T dwarfs are
not a one parameter family in Teff. Because metallicity does not vary enough in
the solar neighborhood to act as the second parameter, the most likely
candidate then is gravity, which in turn translates to mass. Among objects with
similar spectral type, the range of mass suggested by our sample is about a
factor of five (~70 M_Jup to ~15 M_Jup), with the less massive objects making
up the younger members of the sample. We also find the IRAC 4.5 micron fluxes
to be lower than expected, from which we infer a stronger CO fundamental band
at ~4.67 microns. This suggests that equilibrium CH_4/CO chemistry
underestimates the abundance of CO in T dwarf atmospheres, confirming earlier
results based on M-band observations from the ground. In combining IRAC
photometry with near-IR JHK photometry and parallax data, we find the
combination of Ks, IRAC 3.6 micron, and 4.5 micron bands to provide the best
color-color discrimination for a wide range of M, L, and T dwarfs. Also
noteworthy is the M_Ks versus Ks-[4.5] relation, which shows a smooth
progression over spectral type and splits the M, L, and T types cleanly.Comment: 32 pages, 18 figures, accepted for publication to ApJ: revised to
adjust acknowledgments, add a few more references, and the correct
typographical errors in text and tables 1 and 3 (note as binaries
sds0926+5847 and 2ma1553+1532
UBVRI Light Curves of 44 Type Ia Supernovae
We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from
1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence
Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The
data set comprises 2190 observations and is the largest homogeneously observed
and reduced sample of SN Ia to date, nearly doubling the number of
well-observed, nearby SN Ia with published multicolor CCD light curves. The
large sample of U-band photometry is a unique addition, with important
connections to SN Ia observed at high redshift. The decline rate of SN Ia
U-band light curves correlates well with the decline rate in other bands, as
does the U-B color at maximum light. However, the U-band peak magnitudes show
an increased dispersion relative to other bands even after accounting for
extinction and decline rate, amounting to an additional ~40% intrinsic scatter
compared to B-band.Comment: 84 authors, 71 pages, 51 tables, 10 figures. Accepted for publication
in the Astronomical Journal. Version with high-res figures and electronic
data at http://astron.berkeley.edu/~saurabh/cfa2snIa
Circumstellar Disk Candidates Identified in NGC 2264
We present an optical and near-infrared study of a 45' × 45' field in NGC 2264, which includes both S Mon and the Cone Nebula. We report photometry at optical (UBVRCIC) and near-infrared (JHK) wavelengths for ~5600 stars and spectroscopic classifications for ~400 of these stars. We identify circumstellar disk candidates using three techniques: excess ultraviolet (U-V) emission, excess near-IR (I-K and H-K) emission, and Hα emission-line equivalent widths for those stars with spectra. We find generally good correlation between disk indicators thought to originate from different physical processes. We find little if any evolution of disk fraction with stellar age or mass. However, when we derive mass accretion rates () from the excess emission at U, we find that decreases with age over the age range spanned by our data, ~0.1–5 Myr, and increases with mass over the range ~0.25–1 M⊙. These findings are comparable to results found previously by us in the Orion Nebula cluster flanking fields
Genetic Applications in Avian Conservation
A fundamental need in conserving species and their habitats is defining distinct entities that range from individuals to species to ecosystems and beyond (Table 1; Ryder 1986, Moritz 1994, Mayden and Wood 1995, Haig and Avise 1996, Hazevoet 1996, Palumbi and Cipriano 1998, Hebert et al. 2004, Mace 2004, Wheeler et al. 2004, Armstrong and Ball 2005, Baker 2008, Ellis et al. 2010, Winker and Haig 2010). Rapid progression in this interdisciplinary field continues at an exponential rate; thus, periodic updates on theory, techniques, and applications are important for informing practitioners and consumers of genetic information. Here, we outline conservation topics for which genetic information can be helpful, provide examples of where genetic techniques have been used best in avian conservation, and point to current technical bottlenecks that prevent better use of genomics to resolve conservation issues related to birds. We hope this review will provide geneticists and avian ecologists with a mutually beneficial dialogue on how this integrated field can solve current and future problems
Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations
<p>Abstract</p> <p>Background</p> <p><it>Zymomonas mobilis </it>ZM4 (ZM4) produces near theoretical yields of ethanol with high specific productivity and recombinant strains are able to ferment both C-5 and C-6 sugars. <it>Z. mobilis </it>performs best under anaerobic conditions, but is an aerotolerant organism. However, the genetic and physiological basis of ZM4's response to various stresses is understood poorly.</p> <p>Results</p> <p>In this study, transcriptomic and metabolomic profiles for ZM4 aerobic and anaerobic fermentations were elucidated by microarray analysis and by high-performance liquid chromatography (HPLC), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) analyses. In the absence of oxygen, ZM4 consumed glucose more rapidly, had a higher growth rate, and ethanol was the major end-product. Greater amounts of other end-products such as acetate, lactate, and acetoin were detected under aerobic conditions and at 26 h there was only 1.7% of the amount of ethanol present aerobically as there was anaerobically. In the early exponential growth phase, significant differences in gene expression were not observed between aerobic and anaerobic conditions via microarray analysis. HPLC and GC analyses revealed minor differences in extracellular metabolite profiles at the corresponding early exponential phase time point.</p> <p>Differences in extracellular metabolite profiles between conditions became greater as the fermentations progressed. GC-MS analysis of stationary phase intracellular metabolites indicated that ZM4 contained lower levels of amino acids such as alanine, valine and lysine, and other metabolites like lactate, ribitol, and 4-hydroxybutanoate under anaerobic conditions relative to aerobic conditions. Stationary phase microarray analysis revealed that 166 genes were significantly differentially expressed by more than two-fold. Transcripts for Entner-Doudoroff (ED) pathway genes (<it>glk, zwf, pgl, pgk, and eno</it>) and gene <it>pdc</it>, encoding a key enzyme leading to ethanol production, were at least 30-fold more abundant under anaerobic conditions in the stationary phase based on quantitative-PCR results. We also identified differentially expressed ZM4 genes predicted by The Institute for Genomic Research (TIGR) that were not predicted in the primary annotation.</p> <p>Conclusion</p> <p>High oxygen concentrations present during <it>Z. mobilis </it>fermentations negatively influence fermentation performance. The maximum specific growth rates were not dramatically different between aerobic and anaerobic conditions, yet oxygen did affect the physiology of the cells leading to the buildup of metabolic byproducts that ultimately led to greater differences in transcriptomic profiles in stationary phase.</p
Performance of the infrared array camera (IRAC) for SIRTF during instrument integration and test
The Infrared Array Camera (IRAC) is one of three focal plane instruments in the Space Infrared Telescope Facility (SIRTF). IRAC is a four-channel camera that obtains simultaneous images at 3.6, 4.5, 5.8, and 8 microns. Two adjacent 5.12x5.12 arcmin fields of view in the SIRTF focal plane are viewed by the four channels in pairs (3.6 and 5.8 microns; 4.5 and 8 microns). All four detector arrays in the camera are 256x256 pixels in size, with the two shorter wavelength channels using InSb and the two longer wavelength channels using Si:As IBC detectors. We describe here the results of the instrument functional and calibration tests completed at Ball Aerospace during the integration with the cryogenic telescope assembly, and provide updated estimates of the in-flight sensitivity and performance of IRAC in SIRTF
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
- …