77 research outputs found

    Covariability of dissolved oxygen with physical processes in the summertime Chesapeake Bay

    Get PDF
    Long, rapidly sampled time series measurements of dissolved oxygen, temperature, salinity, currents, winds, tides, and insolation were collected during the summer of 1987 across the mesohaline Chesapeake Bay. Analyses of the data show that short term variability of dissolved oxygen was both large and spatially heterogeneous. Time scales of variability ranged from the longest period fluctuations resolved (several days) to the sampling interval (several minutes). The largest variability was associated with large amplitude, wind and tide forced lateral internal oscillations of the pycnocline in the mainstem of the Bay. These resulted in advection of saline, hypoxic water from below the pycnocline onto the flanks of the Bay and into the lower reaches of the Choptank River, an adjoining tributary estuary. Advective variability at higher frequencies was likely due to internal waves, internal mixing, and/or spatial patchiness. Dissolved oxygen also responded to the daily cycle of insolation, but lagged insolation by at least 90° (6 h). Advective variability of dissolved oxygen is implicated as an important characteristic of the majority of summertime benthic environments in the mesohaline Chesapeake Bay and lower reaches of adjoining tributaries

    Ocean deoxygenation: a primer

    Get PDF
    Earth’s ocean is losing oxygen; since the mid-20th century, 1%–2% of the global ocean oxygen inventory has been lost, and over 700 coastal sites have reported new or worsening low-oxygen conditions. This “ocean deoxygenation” is increasing and of great concern because of the potential magnitude of adverse changes to both global and local marine ecosystems. Oxygen is fundamental for life and biogeochemical processes in the ocean. In coastal and shelf regions and semi-enclosed seas, over-fertilization of waters largely from agriculture, sewage, and airborne sources creates algal blooms that die and decay, consuming oxygen. Globally, climate warming both exacerbates the problems from eutrophication and reduces the introduction of oxygen to the interior of the ocean. We discuss mechanisms, scale, assessments, projections, and impacts, including impacts to human well-being, at the individual, community, and ecosystem levels. Deoxygenation together with other stressors presents a major environmental challenge to sustainability and human use of the ocean

    Evaluating Ecosystem Response to Oyster Restoration and Nutrient Load Reduction With a Multispecies Bioenergetics Model

    Get PDF
    Many of the world\u27s coastal ecosystems are impacted by multiple stressors each of which may be subject to different management strategies that may have overlapping or even conflicting objectives. Consequently, management results may be indirect and difficult to predict or observe. We developed a network simulation model intended specifically to examine ecosystem-level responses to management and applied this model to a comparison of nutrient load reduction and restoration of highly reduced stocks of bivalve suspension feeders (eastern oyster, Crassostrea virginica) in an estuarine ecosystem (Chesapeake Bay, USA). Model results suggest that a 50% reduction in nutrient inputs from the watershed will result in lower phytoplankton production in the spring and reduced delivery of organic material to the benthos that will limit spring and summer pelagic secondary production. The model predicts that low levels of oyster restoration will have no effect in the spring but does result in a reduction in phytoplankton standing stocks in the summer. Both actions have a negative effect on pelagic secondary production, but the predicted effect of oyster restoration is larger. The lower effect of oysters on phytoplankton is due to size-based differences infiltration efficiency and seasonality that result in maximum top-down grazer control of oysters at a time when the phytoplankton is already subject to heavy grazing. These results suggest that oyster restoration must be achieved at levels as much as 25-fold present biomass to have a meaningful effect on phytoplankton biomass and as much as 50-fold to achieve effects similar to a 50% nutrient load reduction. The unintended effect of oyster restoration at these levels on other consumers represents a trade-off to the desired effect of reversing eutrophication

    Potential climate-change impacts on the Chesapeake Bay

    Get PDF
    We review current understanding of the potential impact of climate change on the Chesapeake Bay. Scenarios for CO2 emissions indicate that by the end of the 21st century the Bay region will experience significant changes in climate forcings with respect to historical conditions, including increases in CO2 concentrations, sea level, and water temperature of 50–160%, 0.7–1.6m, and 2–6C, respectively. Also likely are increases in precipitation amount (very likely in the winter and spring), precipitation intensity, intensity of tropical and extratropical cyclones (though their frequency may decrease), and sea-level variability. The greatest uncertainty is associatedwith changes in annual streamflow, though it is likely that winter and spring flows will increase. Climate change alone will cause the Bay to function very differently in the future. Likely changes include: (1) an increase in coastal flooding and submergence of estuarine wetlands; (2) an increase in salinity variability on many time scales; (3) an increase in harmful algae; (4) an increase in hypoxia; (5) a reduction of eelgrass, the dominant submergedaquatic vegetation in the Bay; and (6) altered interactions among trophic levels, with subtropical fish and shellfish species ultimately being favored in the Bay. The magnitude of these changes is sensitive to the CO2 emission trajectory, so that actions taken now to reduce CO2 emissions will reduce climate impacts on the Bay. Research needs include improved precipitation and streamflow projections for the Bay watershed and whole-system monitoring, modeling, and process studies that can capture the likely non-linear responses of the Chesapeake Bay system to climate variability, climate change, and their interaction with other anthropogenic stressor

    Landscape-Level Variation in Disease Susceptibility Related to Shallow-Water Hypoxia

    Get PDF
    Diel-cycling hypoxia is widespread in shallow portions of estuaries and lagoons, especially in systems with high nutrient loads resulting from human activities. Far less is known about the effects of this form of hypoxia than deeper-water seasonal or persistent low dissolved oxygen. We examined field patterns of diel-cycling hypoxia and used field and laboratory experiments to test its effects on acquisition and progression of Perkinsus marinus infections in the eastern oyster, Crassostrea virginica, as well as on oyster growth and filtration. P. marinus infections cause the disease known as Dermo, have been responsible for declines in oyster populations, and have limited success of oyster restoration efforts. The severity of diel-cycling hypoxia varied among shallow monitored sites in Chesapeake Bay, and average daily minimum dissolved oxygen was positively correlated with average daily minimum pH. In both field and laboratory experiments, diel-cycling hypoxia increased acquisition and progression of infections, with stronger results found for younger (1-year-old) than older (2-3-year-old) oysters, and more pronounced effects on both infections and growth found in the field than in the laboratory. Filtration by oysters was reduced during brief periods of exposure to severe hypoxia. This should have reduced exposure to waterborne P. marinus, and contributed to the negative relationship found between hypoxia frequency and oyster growth. Negative effects of hypoxia on the host immune response is, therefore, the likely mechanism leading to elevated infections in oysters exposed to hypoxia relative to control treatments. Because there is considerable spatial variation in the frequency and severity of hypoxia, diel-cycling hypoxia may contribute to landscape-level spatial variation in disease dynamics within and among estuarine systems

    The Ocean is Losing its Breath: Declining Oxygen in the Worlds Ocean and Coastal Waters

    Get PDF
    'The Ocean is Losing its Breath' presents a summary of scientific experiments, observations and numerical models addressing the following questions: How has the oxygen content in the open ocean and coastal waters changed over the past century and through geological time? What are the mechanisms behind this oxygen decline? How is ocean oxygen content predicted to change over the rest of the twenty-first century? What are the consequences of low and declining oxygen concentrations in the marine environment? This document was prepared by a group of concerned scientists from across the world, the IOC expert group, the Global Ocean Oxygen Network GO2 NE, established in 2016, which is committed to providing a global and multidisciplinary view on deoxygenation, with a focus on understanding its various aspects and impacts

    Impacts of ocean deoxygenation on fisheries

    Get PDF
    The effects of deoxygenation on fisheries can, at times, be difficult to truly isolate and quantify, but nevertheless are important. Effects manifest themselves through the dynamics of the populations and the fishery, and often co-vary with other environmental variables. Furthermore, oxygen and fisheries dynamics are both dependent on local conditions, making most analyses complicated and dependent on extensive data and modelling to account for the site-specific conditions

    Multidisciplinary Observing in the World Ocean’s Oxygen Minimum Zone Regions: From Climate to Fish — The VOICE Initiative

    Get PDF
    Multidisciplinary ocean observing activities provide critical ocean information to satisfy ever-changing socioeconomic needs and require coordinated implementation. The upper oxycline (transition between high and low oxygen waters) is fundamentally important for the ecosystem structure and can be a useful proxy for multiple observing objectives connected to eastern boundary systems (EBSs) that neighbor oxygen minimum zones (OMZs). The variability of the oxycline and its impact on the ecosystem (VOICE) initiative demonstrates how societal benefits drive the need for integration and optimization of biological, biogeochemical, and physical components of regional ocean observing related to EBS. In liaison with the Global Ocean Oxygen Network, VOICE creates a roadmap toward observation-model syntheses for a comprehensive understanding of selected oxycline-dependent objectives. Local to global effects, such as habitat compression or deoxygenation trends, prompt for comprehensive observing of the oxycline on various space and time scales, and for an increased awareness of its impact on ecosystem services. Building on the Framework for Ocean Observing (FOO), we present a first readiness level assessment for ocean observing of the oxycline in EBS. This was to determine current ocean observing design and future needs in EBS regions (e.g., the California Current System, the Equatorial Eastern Pacific off Ecuador, the Peru–Chile Current system, the Northern Benguela off Namibia, etc.) building on the FOO strategy. We choose regional champions to assess the ocean observing design elements proposed in the FOO, namely, requirement processes, coordination of observational elements, and data management and information products and the related best practices. The readiness level for the FOO elements was derived for each EBS through a similar and very general ad hoc questionnaire. Despite some weaknesses in the questionnaire design and its completion, an assessment was achievable. We found that fisheries and ecosystem management are a societal requirement for all regions, but maturity levels of observational elements and data management and information products differ substantially. Identification of relevant stakeholders, developing strategies for readiness level improvements, and building and sustaining infrastructure capacity to implement these strategies are fundamental milestones for the VOICE initiative over the next 2–5 years and beyond

    Ocean deoxygenation - a climate-related problem

    No full text

    Differences in Relative Predation Vulnerability Between Native and Non-native Oyster Larvae and the Influence on Restoration Planning in an Estuarine Ecosystem

    No full text
    The costs and benefits of non-native introductions as a restoration tool should be estimated prior to any action to prevent both undesirable consequences and waste of restoration resources. The suggested introduction of non-native oyster species, Crassostrea ariakensis, into Chesapeake Bay, USA, provides a good example in which the survival of non-native oysters may differ from that of native oysters, Crassostrea virginica, during the larval stage. Experiments were conducted to compare the predation vulnerability of native and non-native oyster larvae to different predator types (visual vs. non-visual, benthic vs. pelagic). The results suggest that the non-native larvae are more vulnerable to visual and non-visual pelagic predators. Although vulnerability was similar for larvae exposed to benthic non-visual predators, the consumption of one non-native strain was higher than the consumption of native C. virginica larvae. When vulnerability data are combined with predator feeding rates, the predation mortality for non-native larvae in the wild can be much higher than for native larvae. Small changes in larval mortality rates can yield large changes in total larval delivery to the reef for settlement, so these differences among species may contribute to differences in settlement success. These results provide an example of how a comprehensive examination of the perceived benefits of non-native introductions into complex ecosystems can provide important information to inform management decisions
    corecore