319 research outputs found

    Is automatic imitation a specialized form of stimulusā€“response compatibility? Dissociating imitative and spatial compatibilities

    Get PDF
    In recent years research on automatic imitation has received considerable attention because it represents an experimental platform for investigating a number of inter-related theories suggesting that the perception of action automatically activates corresponding motor programs. A key debate within this research centers on whether automatic imitation is any different than other long-term S-R associations, such as spatial stimulus-response compatibility. One approach to resolving this issue is to examine whether automatic imitation shows similar response characteristics as other classes of stimulus-response compatibility. This hypothesis was tested by comparing imitative and spatial compatibility effects with a two alternative forced-choice stimulus-response compatibility paradigm and two tasks: one that involved selecting a response to the stimulus (S-R) and one that involved selecting a response to the opposite stimulus (OS-R), i.e., the one not presented. The stimulus for both tasks was a left or right hand with either the index or middle finger tapping down. Speeded responses were performed with the index or middle finger of the right hand in response to the finger identity or the left-right spatial position of the fingers. Based on previous research and a connectionist model, we predicted standard compatibility effects for both spatial and imitative compatibility in the S-R task, and a reverse compatibility effect for spatial compatibility but not for imitative compatibility in the OS-R task. The results from the mean response times, mean percentage of errors, and response time distributions all converged to support these predictions. A second noteworthy result was that the recoding of the finger identity in the OS-R task required significantly more time than the recoding of the left-right spatial position, but the encoding time for the two stimuli in the S-R task was equivalent. In sum, this evidence suggests that the processing of spatial and imitative compatibility is dissociable with regard to two different processes in dual processing models of stimulus-response compatibility

    Are automatic imitation and spatial compatibility mediated by different processes?

    Get PDF
    Automatic imitation or ā€˜imitative compatibilityā€™ is thought to be mediated by the mirror neuron system and to be a laboratory model of the motor mimicry that occurs spontaneously in naturalistic social interaction. Imitative compatibility and spatial compatibility effects are known to depend on different stimulus dimensions ā€“ body movement topography and relative spatial position. However, it is not yet clear whether these two types of stimulus-response compatibility effect are mediated by the same or different cognitive processes. We present an interactive activation model of imitative and spatial compatibility, based on a dual-route architecture, which substantiates the view they are mediated by processes of the same kind. The model, which is in many ways a standard application of the interactive activation approach, simulates all key results of a recent study by Catmur and Heyes (2011). Specifically, it captures the difference in the relative size of imitative and spatial compatibility effects; the lack of interaction when the imperative and irrelevant stimuli are presented simultaneously; the relative speed of responses in a quintile analysis when the imperative and irrelevant stimuli are presented simultaneously; and the different time courses of the compatibility effects when the imperative and irrelevant stimuli are presented asynchronously

    Effect of GTP and Ca2+ on inositol 1,4,5-trisphosphate induced Ca2+ release from permeabilized rat exocrine pancreatic acinar cells

    Get PDF
    The effects of Ca2+ and GTP on the release of Ca2+ from the inositol 1,4,5-trisphosphate (IP3) sensitive Ca2+ compartment were investigated with digitonin permeabilized rat pancreatic acinar cells. The amount of Ca2+ released due to IP3 directly correlated with the amount of stored Ca2+ and was found to be inversely proportional to the medium free Ca2+ concentration. Ca2+ release induced by 0.18 Ī¼M IP3 was half maximally inhibited at 0.5 Ī¼M free Ca2+, i.e. at concentrations observed in the cytosol of pancreatic acinar cells. GTP did not cause Ca2+ release on its own, but a single addition of GTP (20 Ī¼M) abolished the apparent desensitization of the Ca2+ release which was observed during repeated IP3 applications. This effect of GTP was reversible. GTPĪ³S could not replace GTP. Desensitization still occurred when GTPĪ³S was added prior to GTP. The reported data indicate that GTP, stored Ca2+ and cytosolic free Ca2+ modulate the IP3 induced Ca2+ release. EGTA, Ethylene-glycol-bis (2-aminoethylether)-N,N,Nā€²,Nā€²- tetra acetic acid; GTPĪ³S, Guanosine 5ā€²-O-[3-thio]triphosphate; GDPĪ²S, Guanosine 5ā€²-O-[2-thio]diphosphate; IP3, Inositol 1,4,5-trisphosphate; IP2, Inositol 1,4-bisphosphate; IP4, Inositol 1,3,4,5-tetrakisphosphate; MOPS, Morpholinopropane sulfonic acid; HEPES, 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid; pHMB, Parahydroxymercuribenzoat

    Analysis of the transcriptome of the protozoan Theileria parva using MPSS reveals that the majority of genes are transcriptionally active in the schizont stage

    Get PDF
    Massively parallel signature sequencing (MPSS) was used to analyze the transcriptome of the intracellular protozoan Theileria parva. In total 1ā€‰095ā€‰000, 20 bp sequences representing 4371 different signatures were generated from T.parva schizonts. Reproducible signatures were identified within 73% of potentially detectable predicted genes and 83% had signatures in at least one MPSS cycle. A predicted leader peptide was detected on 405 expressed genes. The quantitative range of signatures was 4ā€“52ā€‰256 transcripts per million (t.p.m.). Rare transcripts (<50 t.p.m.) were detected from 36% of genes. Sequence signatures approximated a lognormal distribution, as in microarray. Transcripts were widely distributed throughout the genome, although only 47% of 138 telomere-associated open reading frames exhibited signatures. Antisense signatures comprised 13.8% of the total, comparable with Plasmodium. Eighty five predicted genes with antisense signatures lacked a sense signature. Antisense transcripts were independently amplified from schizont cDNA and verified by sequencing. The MPSS transcripts per million for seven genes encoding schizont antigens recognized by bovine CD8 T cells varied 1000-fold. There was concordance between transcription and protein expression for heat shock proteins that were very highly expressed according to MPSS and proteomics. The data suggests a low level of baseline transcription from the majority of protein-coding genes

    The embeddedness of organizational performance: multiple membership multiple classification models for the analysis of multilevel networks

    Get PDF
    We present a Multiple Membership Multiple Classification (MMMC) model for analysing variation in the performance of organizational sub-units embedded in a multilevel network. The model postulates that the performance of organizational sub-units varies across network levels defined in terms of: (i) direct relations between organizational sub-units; (ii) relations between organizations containing the sub-units, and (iii) cross-level relations between sub-units and organizations. We demonstrate the empirical mer- its of the model in an analysis of inter-hospital patient mobility within a regional community of health care organizations. In the empirical case study we develop, organizational sub-units are departments of emergency medicine (EDs) located within hospitals (organizations). Networks within and across levels are delineated in terms of patient transfer relations between EDs (lower-level, emergency transfers), hospitals (higher-level, elective transfers), and between EDs and hospitals (cross-level, non-emergency transfers). Our main analytical objective is to examine the association of these interdependent and par- tially nested levels of action with variation in waiting time among EDs ā€“ one of the most commonly adopted and accepted measures of ED performance. We find evidence that variation in ED waiting time is associated with various components of the multilevel network in which the EDs are embedded. Before allowing for various characteristics of EDs and the hospitals in which they are located, we find, for the null models, that most of the network variation is at the hospital level. After adding these characteris- tics to the model, we find that hospital capacity and ED uncertainty are significantly associated with ED waiting time. We also find that the overall variation in ED waiting time is reduced to less than a half of its estimated value from the null models, and that a greater share of the residual network variation for these models is at the ED level and cross level, rather than the hospital level. This suggests that the covari- ates explain some of the network variation, and shift the relative share of residual variation away from hospital networks. We discuss further extensions to the model for more general analyses of multilevel network dependencies in variables of interest for the lower level nodes of these social structures

    Estimating DNA coverage and abundance in metagenomes using a gamma approximation

    Get PDF
    Motivation: Shotgun sequencing generates large numbers of short DNA reads from either an isolated organism or, in the case of metagenomics projects, from the aggregate genome of a microbial community. These reads are then assembled based on overlapping sequences into larger, contiguous sequences (contigs). The feasibility of assembly and the coverage achieved (reads per nucleotide or distinct sequence of nucleotides) depend on several factors: the number of reads sequenced, the read length and the relative abundances of their source genomes in the microbial community. A low coverage suggests that most of the genomic DNA in the sample has not been sequenced, but it is often difficult to estimate either the extent of the uncaptured diversity or the amount of additional sequencing that would be most efficacious. In this work, we regard a metagenome as a population of DNA fragments (bins), each of which may be covered by one or more reads. We employ a gamma distribution to model this bin population due to its flexibility and ease of use. When a gamma approximation can be found that adequately fits the data, we may estimate the number of bins that were not sequenced and that could potentially be revealed by additional sequencing. We evaluated the performance of this model using simulated metagenomes and demonstrate its applicability on three recent metagenomic datasets

    Motor contagion: the contribution of trajectory and end-points

    Get PDF
    Increased involuntary arm movement deviation when observing an incongruent human arm movement has been interpreted as a strong indicator of motor contagion. Here, we examined the contribution of trajectory and end-point information on motor contagion by altering congruence between the stimulus and arm movement. Participants performed cyclical horizontal arm movements whilst simultaneously observing a stimulus representing human arm movement. The stimuli comprised congruent horizontal movements or vertical movements featuring incongruent trajectory and end-points. A novel, third, stimulus comprised curvilinear movements featuring congruent end-points, but an incongruent trajectory. In Experiment 1, our dependent variables indicated increased motor contagion when observing the vertical compared to horizontal movement stimulus. There was even greater motor contagion in the curvilinear stimulus condition indicating an additive effect of an incongruent trajectory comprising congruent end-points. In Experiment 2, this additive effect was also present when facing perpendicular to the display, and thus with end-points represented as a product of the movement rather than an external spatial reference. Together, these findings support the theory of event coding (Hommel et al., Behav Brain Sci 24:849ā€“878, 2001), and the prediction that increased motor contagion takes place when observed and executed actions share common features (i.e., movement end-points)
    • ā€¦
    corecore