249 research outputs found

    Pseudomonas fluorescens CHA0 maintains carbon delivery to Fusarium graminearum-infected roots and prevents reduction in biomass of barley shoots through systemic interactions

    Get PDF
    Soil bacteria such as pseudomonads may reduce pathogen pressure for plants, both by activating plant defence mechanisms and by inhibiting pathogens directly due to the production of antibiotics. These effects are hard to distinguish under field conditions, impairing estimations of their relative contributions to plant health. A split-root system was set up with barley to quantify systemic and local effects of pre-inoculation with Pseudomonas fluorescens on the subsequent infection process by the fungal pathogen Fusarium graminearum. One root half was inoculated with F. graminearum in combination with P. fluorescens strain CHA0 or its isogenic antibiotic-deficient mutant CHA19. Bacteria were inoculated either together with the fungal pathogen or in separate halves of the root system to separate local and systemic effects. The short-term plant response to fungal infection was followed by using the short-lived isotopic tracer 11CO2 to track the delivery of recent photoassimilates to each root half. In the absence of bacteria, fungal infection diverted carbon from the shoot to healthy roots, rather than to infected roots, although the overall partitioning from the shoot to the entire root system was not modified. Both local and systemic pre-inoculation with P. fluorescens CHA0 prevented the diversion of carbon as well as preventing a reduction in plant biomass in response to F. graminearum infection, whereas the non-antibiotic-producing mutant CHA19 lacked this ability. The results suggest that the activation of plant defences is a central feature of biocontrol bacteria which may even surpass the effects of direct pathogen inhibition

    Networking Our Way to Better Ecosystem Service Provision.

    Get PDF
    The ecosystem services (EcoS) concept is being used increasingly to attach values to natural systems and the multiple benefits they provide to human societies. Ecosystem processes or functions only become EcoS if they are shown to have social and/or economic value. This should assure an explicit connection between the natural and social sciences, but EcoS approaches have been criticized for retaining little natural science. Preserving the natural, ecological science context within EcoS research is challenging because the multiple disciplines involved have very different traditions and vocabularies (common-language challenge) and span many organizational levels and temporal and spatial scales (scale challenge) that define the relevant interacting entities (interaction challenge). We propose a network-based approach to transcend these discipline challenges and place the natural science context at the heart of EcoS research.The QUINTESSENCE Consortium gratefully acknowledges the support of Départment SPE and Métaprogramme ECOSERV of INRA, and the French ANR projects PEERLESS (ANR-12-AGRO-0006) and AgroBioSE (ANR-13-AGRO-0001).This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.tree.2015.12.00

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    The multiple-mechanisms hypothesis of biodiversity–stability relationships

    Get PDF
    Long-term research in grassland biodiversity experiments has provided empirical evidence that ecological and evolutionary processes are intertwined in determining both biodiversity–ecosystem functioning (BEF) and biodiversity–stability relationships. Focusing on plant diversity, we hypothesize that multifunctional stability is highest in high-diversity plant communities and that biodiversity–stability relationships increase over time due to a variety of forms of ecological complementarity including the interaction with other biota above and below ground. We introduce the multiple-mechanisms hypothesis of biodiversity–stability relationships suggesting that it is not an individual mechanism that drives long-term biodiversity effects on ecosystem functioning and stability but that several intertwined processes produce increasingly positive ecosystem effects. The following six mechanisms are important. Low-diversity plant communities accumulate more plant antagonists over time (1), and use resources less efficiently and have more open, leaky nutrient cycles (2). Conversely, high-diversity plant communities support a greater diversity and activity of beneficial interaction partners across trophic levels (3); diversify in their traits over time and space, within and across species, to optimize temporal (intra- and interannual) and spatial complementarity (4), create a more stable microclimate (5), and foster higher top-down control of aboveground and belowground herbivores by predators (6). In line with the observation that different species play unique roles in ecosystems that are dynamic and multifaceted, the particular mechanism contributing most to the higher performance and stability of diverse plant communities might differ across ecosystem functions, years, locations, and environmental change scenarios. This indicates “between-context insurance” or “across-context complementarity” of different mechanisms. We introduce examples of experiments that will be conducted to test our hypotheses and which might inspire additional work

    Contrasting effects of cover crops on earthworms: Results from field monitoring and laboratory experiments on growth, reproduction and food choice

    Get PDF
    Cover crops are an essential element of sustainable agriculture and can affect earthworm populations. In a field trial, we investigated the effects of four cover crop treatments: radish (Raphanus sativus var. longipinnatus B.; at high and low seed density), black oat (Avena strigosa Schreb.) and Sudan grass (Sorghum sudanese M.) on earthworms under two irrigation regimes. The two parallel field trials (irrigated and rainfed) demonstrated the significance of soil moisture for earthworm abundance with lower numbers under rainfed black oat and Sudan grass compared with moister bare fallow in autumn (P < 0.05). Soil moisture content changed from autumn to spring and was highest under Sudan grass in both irrigation regimes (P < 0.05). Earthworm numbers equalised and were then similar in all treatments, but under rainfed cover crop treatments, earthworm populations gained 62.3 g g−1 in biomass from autumn to the following spring (P < 0.05). Laboratory experiments showed the importance of N content and more palatability of low C:N ratio radish for growth rate of juvenile Aporrectodea longa and cocoon production by Aporrectodea caliginosa. These two earthworm species showed a different preference in choice chamber experiments between roots and shoots. Radish was consumed first in three out of four experiments. Field and laboratory experiments highlighted the effects of cover crops on earthworm abundance, reproduction and development. Overall, our results showed that cover crops can support earthworm development, but under field conditions, soil moisture is more important. In the short-term, this can lead to a trade-off between plant biomass production and earthworm numbers

    Correction: Atomate2: modular workflows for materials science

    Get PDF
    Correction for “Atomate2: modular workflows for materials science” by Alex M. Ganose et al., Digital Discovery, 2025, 4, 1944–1973, https://doi.org/10.1039/D5DD00019J.There is an error in Aakash Naik name in the author list of the original manuscript. The correct name, as given in the author list of this Correction, is “Aakash A. Naik”.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers

    Turning the Table: Plants Consume Microbes as a Source of Nutrients

    Get PDF
    Interactions between plants and microbes in soil, the final frontier of ecology, determine the availability of nutrients to plants and thereby primary production of terrestrial ecosystems. Nutrient cycling in soils is considered a battle between autotrophs and heterotrophs in which the latter usually outcompete the former, although recent studies have questioned the unconditional reign of microbes on nutrient cycles and the plants' dependence on microbes for breakdown of organic matter. Here we present evidence indicative of a more active role of plants in nutrient cycling than currently considered. Using fluorescent-labeled non-pathogenic and non-symbiotic strains of a bacterium and a fungus (Escherichia coli and Saccharomyces cerevisiae, respectively), we demonstrate that microbes enter root cells and are subsequently digested to release nitrogen that is used in shoots. Extensive modifications of root cell walls, as substantiated by cell wall outgrowth and induction of genes encoding cell wall synthesizing, loosening and degrading enzymes, may facilitate the uptake of microbes into root cells. Our study provides further evidence that the autotrophy of plants has a heterotrophic constituent which could explain the presence of root-inhabiting microbes of unknown ecological function. Our discovery has implications for soil ecology and applications including future sustainable agriculture with efficient nutrient cycles

    Association of Variants in the SPTLC1 Gene with Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation. Objective: To identify the genetic variants associated with juvenile ALS. Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism. Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members. Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway. Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.
    corecore