77 research outputs found
HCG 16 Revisited: Clues About Galaxy Evolution in Groups
We present new spectroscopic observations of 5 galaxies, members of the
unusually active compact group HCG 16, observed using the Palomar 5m telescope.
The high signal to noise ratios (S/N ) of the spectra allow us to
study the variation of the emission line characteristics and the stellar
populations in the nucleus and the circumnuclear regions of the galaxies. The
emission line characteristics of these galaxies are complex, varying between
Seyfert 2 and LINERs or between LINERs and starbursts. All of the galaxies show
traces of intermediate age stellar populations, supporting our previous result
that post-starburst galaxies are common in compact groups. The galaxies
HCG16--4 and HCG16--5 show double nuclei and therefore could be two cases of
recent merger. Our observations support a scenario where HCG 16 was formed by
the successive merger of metal poor, low mass galaxies. The galaxies HCG16--1
and HCG16--2, which are more evolved, form the old core of the group. Galaxies
HCG16--4 and HCG16--5 are two more recent additions still in a merging phase.
Galaxy HCG16--5 is a starburst galaxy which is just beginning to fall into the
core. If HCG 16 is representative of compact groups in their early stage, the
whole set of observations implies that the formation of compact groups is the
result of hierarchical galaxy formation. HCG 16 could be one example of this
process operating in the local universe.Comment: tar file containing text and figures is available at
http://www.daf.on.br/~reinaldo/paper.htm
The Peculiar Motions of Early-Type Galaxies in Two Distant Regions. IV. The Photometric Fitting Procedure
The EFAR project is a study of 736 candidate early-type galaxies in 84
clusters lying in two regions towards Hercules-Corona Borealis and
Perseus-Cetus at distances km/s. In this paper we
describe a new method of galaxy photometry adopted to derive the photometric
parameters of the EFAR galaxies. The algorithm fits the circularized surface
brightness profiles as the sum of two seeing-convolved components, an
and an exponential law. This approach allows us to fit the large variety of
luminosity profiles displayed by the EFAR galaxies homogeneously and to derive
(for at least a subset of these) bulge and disk parameters. Multiple exposures
of the same objects are optimally combined and an optional sky-fitting
procedure has been developed to correct for sky subtraction errors. Extensive
Monte Carlo simulations are analyzed to test the performance of the algorithm
and estimate the size of random and {\it systematic} errors. Random errors are
small, provided that the global signal-to-noise ratio of the fitted profiles is
larger than . Systematic errors can result from 1) errors in the
sky subtraction, 2) the limited radial extent of the fitted profiles, 3) the
lack of resolution due to seeing convolution and pixel sampling, 4) the use of
circularized profiles for very flattened objects seen edge-on and 5) a poor
match of the fitting functions to the object profiles. Large systematic errors
are generated by the widely used simple law to fit luminosity
profiles when a disk component, as small as 20% of the total light, is present.Comment: 47 pages, Latex File, aaspp4.sty, flushrt.sty, 16 Postscript figures,
to appear in ApJ
Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study
Background: There is no consensus on the most appropriate approach to handle missing covariate data within prognostic modelling studies. Therefore a simulation study was performed to assess the effects of different missing data techniques on the performance of a prognostic model.
Methods: Datasets were generated to resemble the skewed distributions seen in a motivating breast cancer example. Multivariate missing data were imposed on four covariates using four different mechanisms; missing completely at random (MCAR), missing at random (MAR), missing not at random (MNAR) and a combination of all three mechanisms. Five amounts of incomplete cases from 5% to 75% were considered. Complete case analysis (CC), single imputation (SI) and five multiple imputation (MI) techniques available within the R statistical software were investigated: a) data augmentation (DA) approach assuming a multivariate normal distribution, b) DA assuming a general location model, c) regression switching imputation, d) regression switching with predictive mean matching (MICE-PMM) and e) flexible additive imputation models. A Cox proportional hazards model was fitted and appropriate estimates for the regression coefficients and model performance measures were obtained.
Results: Performing a CC analysis produced unbiased regression estimates, but inflated standard errors, which affected the significance of the covariates in the model with 25% or more missingness. Using SI, underestimated the variability; resulting in poor coverage even with 10% missingness. Of the MI approaches, applying MICE-PMM produced, in general, the least biased estimates and better coverage for the incomplete covariates and better model performance for all mechanisms. However, this MI approach still produced biased regression coefficient estimates for the incomplete skewed continuous covariates when 50% or more cases had missing data imposed with a MCAR, MAR or combined mechanism. When the missingness depended on the incomplete covariates, i.e. MNAR, estimates were biased with more than 10% incomplete cases for all MI approaches.
Conclusion: The results from this simulation study suggest that performing MICE-PMM may be the preferred MI approach provided that less than 50% of the cases have missing data and the missing data are not MNAR
Investigation of the role of Li resonances in the halo structure of Li through the Li(p, d)Li transfer reaction
International audienceThe first measurement of the one-neutron transfer reaction 11Li(p,d)10Li performed using the IRIS facility at TRIUMF with a 5.7AMeV11Li beam interacting with a solid H2 target is reported. The 10Li residue was populated strongly as a resonance peak with energy Er=0.62 ±0.04MeV having a total width = 0.33 ±0.07MeV. The angular distribution of this resonance is characterized by neutron occupying the 1p1/2orbital. A DWBA analysis yields a spectroscopic factor of 0.67 ±0.12for p1/2 removal strength from the ground state of 11Li to the region of the peak
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Effects of Cu/Zn Superoxide Dismutase (sod1) Genotype and Genetic Background on Growth, Reproduction and Defense in Biomphalaria glabrata
Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at copper-zinc superoxide dismutase (sod1). We tested whether there is a fitness cost associated with carrying the most resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation
Final Targeting Strategy for the SDSS-IV APOGEE-2N Survey
APOGEE-2 is a dual-hemisphere, near-infrared (NIR), spectroscopic survey with
the goal of producing a chemo-dynamical mapping of the Milky Way Galaxy. The
targeting for APOGEE-2 is complex and has evolved with time. In this paper, we
present the updates and additions to the initial targeting strategy for
APOGEE-2N presented in Zasowski et al. (2017). These modifications come in two
implementation modes: (i) "Ancillary Science Programs" competitively awarded to
SDSS-IV PIs through proposal calls in 2015 and 2017 for the pursuit of new
scientific avenues outside the main survey, and (ii) an effective 1.5-year
expansion of the survey, known as the Bright Time Extension, made possible
through accrued efficiency gains over the first years of the APOGEE-2N project.
For the 23 distinct ancillary programs, we provide descriptions of the
scientific aims, target selection, and how to identify these targets within the
APOGEE-2 sample. The Bright Time Extension permitted changes to the main survey
strategy, the inclusion of new programs in response to scientific discoveries
or to exploit major new datasets not available at the outset of the survey
design, and expansions of existing programs to enhance their scientific success
and reach. After describing the motivations, implementation, and assessment of
these programs, we also leave a summary of lessons learned from nearly a decade
of APOGEE-1 and APOGEE-2 survey operations. A companion paper, Santana et al.
(submitted), provides a complementary presentation of targeting modifications
relevant to APOGEE-2 operations in the Southern Hemisphere.Comment: 59 pages; 11 Figures; 7 Tables; 2 Appendices; Submitted to Journal
and Under Review; Posting to accompany papers using the SDSS-IV/APOGEE-2 Data
Release 17 scheduled for December 202
Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
Sloan Digital Sky Survey IV : mapping the Milky Way, nearby galaxies, and the distant universe
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z ~ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z ~ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
- …