292 research outputs found

    Connectivity of the Outer Plexiform Layer of the Mouse Retina

    Get PDF
    The retina has two synaptic layers: In the outer plexiform layer (OPL), signals from the photoreceptors (PRs) are relayed to the bipolar cells (BCs) with one type of horizontal cell (HC) as interneuron. In the inner plexiform layer (IPL), the retinal ganglion cells (RGCs) receive input from the bipolar cells, modulated by multiple types of amacrine cells. The axons of the retinal ganglion cells form the optic nerve which transmit the visual signal to the higher regions of the brain (Masland 2012). Studies of signal processing in the retina usually focus on the inner plexiform layer. Here, the main computations take place such as direction selectivity, orientation selectivity and object motion detection (Gollisch and Meister 2010). However, to fully understand how these computations arise, it is also important to understand how the input to the ganglion cells is computed and thus to understand the functional differences between BC signals. While these are shaped to some extent in the IPL through amacrine cell feedback (Franke et al. 2017), they are also influenced by computations in the OPL (Drinnenberg et al. 2018). Accordingly, it is essential to understand how the bipolar cell signals are formed and what the exact connectivity in the OPL is. This thesis project aims at a quantitative picture of the mouse outer retina connectome. It takes the approach of systematically analyzing connectivity between the cell types in the OPL based on available high-resolution 3D electron microscopy imaging data (Helmstaedter et al. 2013). We reconstructed photoreceptor axon terminals, horizontal cells and bipolar cells, and quantified their contact statistics. We identified a new structure on HC dendrites which likely defines a second synaptic layer in the OPL below the PRs. Based on the reconstructed morphology, we created a biophysical model of a HC dendrite to gain insights into potential functional mechanisms. Our results reveal several new connectivity patterns in the mouse OPL and suggest that HCs perform two functional roles at two distinct output sites at the same time. The project emphasizes how large-scale EM data can boost research on anatomical connectivity and beyond and highlights the value of the resulting data for detailed biophysical modeling. Moreover, it shows how the known amount of complexity increases with the level of detail with which we can study a subject. Beyond that, this thesis project demonstrates the benefits of data sharing and open science which only enabled our studies

    Cognitive Impairment in Multiple Sclerosis Is Reflected by Increased Susceptibility to the Sound-Induced Flash Illusion

    Get PDF
    Objective: To determine whether the performance of multiple sclerosis (MS) patients in the sound-induced flash illusion (SiFi), a multisensory perceptual illusion, would reflect their cognitive impairment.Methods: We performed the SiFi task as well as an extensive neuropsychological testing in 95 subjects [39 patients with relapse-remitting MS (RRMS), 16 subjects with progressive multiple sclerosis (PMS) and 40 healthy control subjects (HC)].Results: MS patients reported more frequently the multisensory SiFi than HC. In contrast, there were no group differences in the control conditions. Essentially, patients with progressive type of MS continued to perceive the illusion at stimulus onset asynchronies (SOA) that were more than three times longer than the SOA at which the illusion was already disrupted for healthy controls. Furthermore, MS patients' degree of cognitive impairment measured with a broad neuropsychological battery encompassing tests for memory, attention, executive functions, and fluency was predicted by their performance in the SiFi task for the longest SOA of 500 ms.Conclusions: These findings support the notion that MS patients exhibit an altered multisensory perception in the SiFi task and that their susceptibility to the perceptual illusion is negatively correlated with their neuropsychological test performance. Since MS lesions affect white matter tracts and cortical regions which seem to be involved in the transfer and processing of both crossmodal and cognitive information, this might be one possible explanation for our findings. SiFi might be considered as a brief, non-expensive, language- and education-independent screening test for cognitive deficits in MS patients

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    Get PDF
    Peer reviewe

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Alignment of the CMS muon system with cosmic-ray and beam-halo muons

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS muon system has been aligned using cosmic-ray muons collected in 2008 and beam-halo muons from the 2008 LHC circulating beam tests. After alignment, the resolution of the most sensitive coordinate is 80 microns for the relative positions of superlayers in the same barrel chamber and 270 microns for the relative positions of endcap chambers in the same ring structure. The resolution on the position of the central barrel chambers relative to the tracker is comprised between two extreme estimates, 200 and 700 microns, provided by two complementary studies. With minor modifications, the alignment procedures can be applied using muons from LHC collisions, leading to additional significant improvements.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR(Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    • …
    corecore