188 research outputs found

    Proton magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations

    Get PDF
    H-1-MR spectroscopy of skeletal muscle provides insight into metabolism that is not available noninvasively by other methods. The recommendations given in this article are intended to guide those who have basic experience in general MRS to the special application of H-1-MRS in skeletal muscle. The highly organized structure of skeletal muscle leads to effects that change spectral features far beyond simple peak heights, depending on the type and orientation of the muscle. Specific recommendations are given for the acquisition of three particular metabolites (intramyocellular lipids, carnosine and acetylcarnitine) and for preconditioning of experiments and instructions to study volunteers.Peer reviewe

    Dynamin-Related Protein 1-Dependent Mitochondrial Fission Changes in the Dorsal Vagal Complex Regulate Insulin Action

    Get PDF
    Mitochondria undergo dynamic changes to maintain function in eukaryotic cells. Insulin action in parallel regulates glucose homeostasis, but whether specific changes in mitochondrial dynamics alter insulin action and glucose homeostasis remains elusive. Here, we report that high-fat feeding in rodents incurred adaptive dynamic changes in mitochondria through an increase in mitochondrial fission in parallel to an activation of dynamin-related protein 1 (Drp1) in the dorsal vagal complex (DVC) of the brain. Direct inhibition of Drp1 negated high-fat-feeding-induced mitochondrial fission, endoplasmic reticulum (ER) stress, and insulin resistance in the DVC and subsequently restored hepatic glucose production regulation. Conversely, molecular activation of DVC Drp1 in healthy rodents was sufficient to induce DVC mitochondrial fission, ER stress, and insulin resistance. Together, these data illustrate that Drp1-dependent mitochondrial fission changes in the DVC regulate insulin action and suggest that targeting the Drp1-mitochondrial-dependent pathway in the brain may have therapeutic potential in insulin resistance

    Methods for Assessing Mitochondrial Function in Diabetes

    Get PDF
    A growing body of research is investigating the potential contribution of mitochondrial function to the etiology of type 2 diabetes. Numerous in vitro, in situ, and in vivo methodologies are available to examine various aspects of mitochondrial function, each requiring an understanding of their principles, advantages, and limitations. This review provides investigators with a critical overview of the strengths, limitations and critical experimental parameters to consider when selecting and conducting studies on mitochondrial function. In vitro (isolated mitochondria) and in situ (permeabilized cells/tissue) approaches provide direct access to the mitochondria, allowing for study of mitochondrial bioenergetics and redox function under defined substrate conditions. Several experimental parameters must be tightly controlled, including assay media, temperature, oxygen concentration, and in the case of permeabilized skeletal muscle, the contractile state of the fibers. Recently developed technology now offers the opportunity to measure oxygen consumption in intact cultured cells. Magnetic resonance spectroscopy provides the most direct way of assessing mitochondrial function in vivo with interpretations based on specific modeling approaches. The continuing rapid evolution of these technologies offers new and exciting opportunities for deciphering the potential role of mitochondrial function in the etiology and treatment of diabetes

    Novel role for thioredoxin reductase-2 in mitochondrial redox adaptations to obesogenic diet and exercise in heart and skeletal muscle

    Get PDF
    Increased fatty acid availability and oxidative stress are physiological consequences of exercise (Ex) and a high-fat, high-sugar (HFHS) diet. Despite these similarities, the global effects of Ex are beneficial, whereas HFHS diets are largely deleterious to the cardiovascular system. The reasons for this disparity are multifactorial and incompletely understood. We hypothesized that differences in redox adaptations following HFHS diet in comparison to exercise may underlie this disparity, particularly in mitochondria. Our objective in this study was to determine mechanisms by which heart and skeletal muscle (red gastrocnemius, RG) mitochondria experience differential redox adaptations to 12 weeks of HFHS diet and/or exercise training (Ex) in rats. Surprisingly, both HFHS feeding and Ex led to contrasting effects in heart and RG, in that mitochondrial H2O2 decreased in heart but increased in RG following both HFHS diet and Ex, in comparison to sedentary animals fed a control diet. These differences were determined to be due largely to increased antioxidant/anti-inflammatory enzymes in the heart following the HFHS diet, which did not occur in RG. Specifically, upregulation of mitochondrial thioredoxin reductase-2 occurred with both HFHS and Ex in the heart, but only with Ex in RG, and systematic evaluation of this enzyme revealed that it is critical for suppressing mitochondrial H2O2 during fatty acid oxidation. These findings are novel and important in that they illustrate the unique ability of the heart to adapt to oxidative stress imposed by HFHS diet, in part through upregulation of thioredoxin reductase-2. Furthermore, upregulation of thioredoxin reductase-2 plays a critical role in preserving the mitochondrial redox status in the heart and skeletal muscle with exercise.Funding from the National Institutes of Health, United State

    Ectopic lipid storage in non-alcoholic fatty liver disease is not mediated by impaired mitochondrial oxidative capacity in skeletal muscle

    Get PDF
    Background and Aims. Simple clinical algorithms including the Fatty Liver Index (FLI) and Lipid Accumulation Product (LAP) have been developed as a surrogate marker for Non-Alcoholic Fatty Liver Disease (NAFLD). These algorithms have been constructed using ultrasonography, a semi-quantitative method. This study aimed to validate FLI and LAP as measures of hepatic steatosis, as measured quantitatively by proton magnetic resonance spectroscopy (1H-MRS). Methods. Data were collected from 168 patients with NAFLD and 168 controls who had undergone clinical, biochemical and anthropometric assessment in the course of research studies. Values of FLI and LAP were determined, and assessed both as predictors of the presence of hepatic steatosis (liver fat >5.5 %) and of actual liver fat content, as measured by 1H MRS. The discriminative ability of FLI and LAP was estimated using the area under the Receiver Operator Characteristic curve (AUROC). Since FLI can also be interpreted as a predictive probability of hepatic steatosis, we assessed how well calibrated it was in our cohort. Linear regression with prediction intervals was used to assess the ability of FLI and LAP to predict liver fat content. Results. FLI and LAP discriminated between patients with and without hepatic steatosis with an AUROC of 0.79 (IQR= 0.74, 0.84) and 0.78 (IQR= 0.72, 0.83), although quantitative prediction of liver fat content was unsuccessful. Additionally, the algorithms accurately matched the observed percentages of patients with hepatic steatosis in our cohort. Conclusions. FLI and LAP may be used clinically, and for metabolic and epidemiological research, to identify patients with hepatic steatosis, but not as surrogates for liver fat content

    Regulation of skeletal muscle oxidative capacity and insulin signaling by the Mitochondrial Rhomboid Protease PARL

    Get PDF
    Type 2 diabetes mellitus (T2DM) and aging are characterized by insulin resistance and impaired mitochondrial energetics. In lower organisms, remodeling by the protease pcp1 (PARL ortholog) maintains the function and lifecycle of mitochondria. We examined whether variation in PARL protein content is associated with mitochondrial abnormalities and insulin resistance. PARL mRNA and mitochondrial mass were both reduced in elderly subjects and in subjects with T2DM. Muscle knockdown of PARL in mice resulted in malformed mitochondrial cristae, lower mitochondrial content, decreased PGC1&alpha; protein levels, and impaired insulin signaling. Suppression of PARL protein in healthy myotubes lowered mitochondrial mass and insulin-stimulated glycogen synthesis and increased reactive oxygen species production. We propose that lower PARL expression may contribute to the mitochondrial abnormalities seen in aging and T2DM.<br /

    A gene expression atlas of the domestic pig

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This work describes the first genome-wide analysis of the transcriptional landscape of the pig. A new porcine Affymetrix expression array was designed in order to provide comprehensive coverage of the known pig transcriptome. The new array was used to generate a genome-wide expression atlas of pig tissues derived from 62 tissue/cell types. These data were subjected to network correlation analysis and clustering.</p> <p>Results</p> <p>The analysis presented here provides a detailed functional clustering of the pig transcriptome where transcripts are grouped according to their expression pattern, so one can infer the function of an uncharacterized gene from the company it keeps and the locations in which it is expressed. We describe the overall transcriptional signatures present in the tissue atlas, where possible assigning those signatures to specific cell populations or pathways. In particular, we discuss the expression signatures associated with the gastrointestinal tract, an organ that was sampled at 15 sites along its length and whose biology in the pig is similar to human. We identify sets of genes that define specialized cellular compartments and region-specific digestive functions. Finally, we performed a network analysis of the transcription factors expressed in the gastrointestinal tract and demonstrate how they sub-divide into functional groups that may control cellular gastrointestinal development.</p> <p>Conclusions</p> <p>As an important livestock animal with a physiology that is more similar than mouse to man, we provide a major new resource for understanding gene expression with respect to the known physiology of mammalian tissues and cells. The data and analyses are available on the websites <url>http://biogps.org and http://www.macrophages.com/pig-atlas</url>.</p
    corecore